Toprated ScreenCasts
Text Section  Link to original post  Rating (out of 100)  Number of votes  Copy of rated post 

14.10 Solidliquid Equilibria  Click here.  100  2 
Solidliquid Equilibria using Excel (7:38min, msu) The strategy for solving SLE is discussed and an example generating a couple points from Figure 14.12 of the text are performed. Most of the concepts are not unique to UNIFAC or Excel. This screeencast shows how to use the solver tool to find solubility at at given temperature. 
05.2  The Rankine cycle  Click here.  100  1 
Thermal Efficiency with a 1Stage Rankine Cycle. (uakron.edu, 12min) Steam from a boiler enters a turbine at 350C and 1.2MPa and exits at 0.01MPa and saturated vapor; compute the thermal efficiency (η_{θ}) of the Rankine cycle based on this turbine. (Note that this is something quite different from the turbine's "expander" efficiency, η_{E}.) This kind of calculation is one of the elementary skills that should come out of any thermodynamics course. Try to pause the video often and work out the answer on your own whenever you think you can. You will learn much more about the kinds of mistakes you might make if you take your best shot, then use the video to check yourself. Then practice some more by picking out other boiler and condenser conditions and turbine efficiencies. FYI: the conditions of this problem should look familiar because they are the same as the turbine efficiency example in Chapter 4. That should make it easy for you to take your best shot. Comprehension Questions: 1. The entropy balance is cited in this video, but never comes into play. Why not? 2. Steam from a boiler enters a turbine at 400C and 2.5 MPa and exits a 100% efficient turbine at 0.025MPa; compute the Rankine efficiency. Comment on the practicality of this process. (Hint: review Chapter 4 if you need help with turbine efficiency.) 
11.02  Calculations with Activity Coefficients  Click here.  100  3 
Bubble Temperature (2:43) (msu.edu) The culmination of the activity coefficient method is application of the fitted activity coefficients to extrapolate from limited experiments in a Stage III calculation. The bubble temperature is the easiest after bubble pressure. The recommended order of study is 1) Bubble Pressure; 2) Bubble Temperature; 3) Dew Pressure; 4) Dew Temperature. Note that an entire Txy diagram can be generated with bubble temperature calculations; no dew calculations are required. 
07.02 Corresponding States  Click here.  100  1 
Principles of Corresponding States (10:02) (msu.edu) Comprehension Questions: 1. What is the value of the reduced vapor pressure for Krypton at a reduced temperature of 0.7? How does this help us to characterize the vapor pressure curve? 2. Sketch the graph of vapor pressure vs. temperature as presented in this screencast for the compounds: Krypton and Ethanol. Be sure to label your axes completely and accurately. Draw a vertical line to indicate the condition that defines the acentric factor. 
12.04  The FloryHuggins Model  Click here.  100  2 
The Flory and FloryHuggins Models (7:05) (msu.edu) Flory recognized the importance of molecular size on entropy, and the Flory equation is an important building block for many equations in Chapter 13. Flory introduced the importance of free volume. The FloryHuggins model combines the Flory equation with the ScatchardHildebrand model using the degree of polymerization and the parameter χ. The FloryHuggins model is used widely in the polymer industry. Comprehension Questions: Assume δ_{P}=δ_{S} for polystyrene, where δ_{S} is the solubility parameter for styrene. Also, polystyrene typically has a molecular weight of about 15,000. Room temperature is 25°C. 1. Estimate the infinite dilution activity coefficient of styrene in polystyrene. 
10.08  Concepts for Generalized Phase Equilibria  Click here.  100  1 
When expressing the derivative of the total Gibbs energy by chain rule, there is one particular partial derivative that relates to each component in the mixture: the "chemical potential." By adapting the derivation from Chapter 9 of the equilibrium constraint for pure fluids, we can show that the equilibrium constraint for mixtures is that the chemical potential of each component in each phase must be equal. That is fine mathematically but it is not very intuitive. By translating the chemical potential into a rigorous definition of fugacity of a component in a mixture, we recognize that an equivalent equilibrium constraint is that the fugacity of each component in each phase must be equal. (8min, Live, uakron.edu) This offers the intuitive perspective of, say, molecules from the liquid escaping to the vapor and molecules from the vapor escaping to the liquid; when the "escaping tendencies" are equal, the phases experience no net change and we call that equilibrium. 
10.06  Relating VLE to Distillation  Click here.  100  1 
Distillation is the primary choice for separations in the petrochemical industry. Because the majority of chemical processing involves separations/purifications, that makes distillation the biggest economic driver in all of chemical production. Therefore, it is very important for chemical engineers to understand how distillation works (21min, uakron.edu) and how VLE plays the major role. This video is a bit long, but it puts into context how phase diagrams and thermodynamic properties relate to very important practical applications. You may find it helpful to reinforce the conceptual video with some sample calculations.(12min) At the end of the video, you should be able to answer the following: Consider the acetone+ethanol system. Use SCVP (Eqn 2.47) to answer the following.

10.08  Concepts for Generalized Phase Equilibria  Click here.  100  1 
Concepts for General Phase Equilibria (12:33) (msu.edu) The calculus used in Chapter 6 needs to be generalized to add composition dependence. Also, we introduce partial molar properties and composition derivatives that are not partial molar properties. We introduce chemical potential These concepts are used to show that the chemical potentials and component fugacities are used as criteria for phase equilibria. 
10.07  Nonideal Systems  Click here.  100  1 
This screencast shows how to quickly visualize Pxy phase diagrams for nonideal systems using Excel (5min, uakron.edu). These sample calculations for methanol+benzene apply the simplest nonideal solution model: ΔH_{mix} = A_{12}*x_{1}*x_{2}. Rigors of this model are discussed in Chapter 11. Nevertheless, its basic elements are simple enough that they can be understood in Chapter 10. When x1=0 or x2=0, a pure fluid is indicated, corresponding to no mixing and zero heat of mixing. When A12=0, the ideal solution approximation is recovered. When A12>0, the model indicates an endothermic interaction (like 2propanol+water, Fig. 10.8c), giving rise to "positive deviations from Raoult's Law." When A12<0, the model indicates an exothermic interaction (like acetone+chloroform, Fig. 10.9c), giving rise to "negative deviations from Raoult's Law." With this spreadsheet, you can quickly change your components and A12 values to see how the phase diagram changes and gain "handson" familiarity with the principles discussed in Section 10.7. Note: This is a companion file in a series. You may wish to choose your own order for viewing them. For example, you should implement the first three videos before implementing this one. Also, you might like to see how to quickly visualize the Txy analog of the Pxy phase diagram. If you see a phase diagram like the ones in section 11.8, you might want to learn about LLE phase diagrams. The links on the software tutorial present a summary of the techniques to be implemented throughout Unit3 in a quick access format that is more compact than what is presented elsewhere. Some students may find it helpful to refer to this compact list when they find themselves "not being able to find the forest because of all the trees." Comprehension Questions: 
01.6 Summary  Click here.  100  1 
The objectives for Chapter 1 were: 1. Explain the definitions and relations between temperature, molecular kinetic energy, To these, we could add expressing and explaining the first and second laws. Make a quick list of these expressions and explanations in your own words, including cartoons or illustrations as you see fit, starting with the first and second laws. 