Top-rated ScreenCasts

Text Section Link to original post Rating (out of 100) Number of votes Copy of rated post
17.05 - Effect of Pressure, Inerts, Feed Ratios Click here. 100 1

How to push, pull, persuade a reaction (3:32) (msu.edu)

Pressure can be used to influence conversion for reactions where gas phase species are present. Feed ratios, inerts, or simultaneous reactions can also be used.

Comprehension Questions:

1. The principle by which a change in temperature, pressure, or concentration leads to a counteracting change in equilibrium is known as:_____.
2. For the reaction: CO + 2H2 = CH3OH, an increase in pressure will cause the products to: ___ (decrease, increase, or be unaffected). Explain.
2. For the reaction: CH4 + H2O = CO + 3H2, an increase in pressure will cause the products to: ___ (decrease, increase, or be unaffected). Explain. (FYI: this reaction, known as "steam reforming" is an important step in making chemicals from natural gas.)
3. For the reaction: CO + 2H2 = CH3OH, adding an inert component will cause the products to: ___ (decrease, increase, or be unaffected). Explain.
4. We discuss temperature effects in detail later, but for now you should be able to make predictions based on ____ principle (cf. #1 above). An exothermic reaction gives off heat. Therefore, adding heat to an exothermic reaction (ie. raising the temperature) will cause the products to: ___ (decrease, increase, or be unaffected). Explain.
5. For the reaction: H2O + CO = H2 + CO2, an increase in pressure will cause the products to: ___ (decrease, increase, or be unaffected). Explain. (As a first approximation, you may neglect deviations from ideal gas behavior, but then discuss the effect these deviations would have if you did take them into account. Which component's fugacity would be most affected by these deviations and how do these deviations change with pressure?)
6. For the reaction: coal + H2O = CO + H2, an increase in pressure will cause the products to: ___ (decrease, increase, or be unaffected). Explain. (Hint: carbon in the form of coal is solid and does not exist in the vapor phase. cf. section 17.14. It might be helpful to think of the reverse reaction, known as coking, where the solid carbon precipitates from the gas. This is a very simple example of simultaneous reaction and phase equilibrium.)
7. For the reaction: CO + 2H2 = CH3OH, adding an inert liquid to the reactor through which all products are removed will cause the products to: ___ (decrease, increase, or be unaffected). Explain. (Hint: this is a bit more sophisticated example of simultaneous reaction and phase equilibrium. How will the inert liquid alter the concentrations in the vapor? Remember that the fugacities are proportional to the gaseous partial pressures.)


01.6 Summary Click here. 100 1

The objectives for Chapter 1 were:

1. Explain the definitions and relations between temperature, molecular kinetic energy,
molecular potential energy and macroscopic internal energy, including the role of intermolecular potential energy and how it is modeled. Explain why the ideal gas internal energy
depends only on temperature.
2. Explain the molecular origin of pressure.
3. Apply the vocabulary of thermodynamics with words such as the following: work, quality,
interpolation, sink/reservoir, absolute temperature, open/closed system, intensive/extensive
property, subcooled, saturated, superheated.
4. Explain the advantages and limitations of the ideal gas model.
5. Sketch and interpret paths on a P-Vdiagram.
6. Perform steam table computations like quality determination, double interpolation.

To these, we could add expressing and explaining the first and second laws. Make a quick list of these expressions and explanations in your own words, including cartoons or illustrations as you see fit,  starting with the first and second laws.

04.09 Turbine calculations Click here. 100 2

Entropy Balances: Solving for Turbine Efficiency Sample Calculation. (uakron.edu, 10min) Steam turbines are very common in power generation cycles. Knowing how to compute the actual work, reversible work, and compare them is an elementary part of any engineering thermodynamics course.

Comprehension Questions:

1. An adiabatic turbine is supplied with steam at 2.0 MPa and 600°C and it exhausts at 98% quality and 24°C. (a) Compute the work output per kg of steam.(b) Compute the efficiency of the turbine.

2. A Rankine cycle operates on steam exiting the boiler at 7 MPa and 550°C and expanding to 60°C and 98% quality. Compute the efficiency of the turbine.

17.05 - Effect of Pressure, Inerts, Feed Ratios Click here. 100 1

Partial pressures and reactor sizing are among the keys to chemical engineering calculations (uakron.edu, 7 min, review from Section 1.6). Partial pressures (uakron.edu, 7 min) also play an essential role in reaction equilibrium calculations. Partial pressure calculations basically involve straightforward mass balances, but specific vocabulary and a need for systematic precision can cause difficulty. The calculations involve six elements that must be carefully computed:

(1) Stoichiometry - the reaction equation must be stoichiometrically balanced such that the number of atoms of each element are the same on both sides of the equation. This balance is achieved by adjusting the stoichiometric coefficients. The change in the number of moles of each component must be in correct stoichiometric proportions relative to the "key component." Inert compounds (see below) are NOT included in the stoichiometric equation. For the example in this presentation, the objective of the reactor is to oxidize carbon monoxide (CO) in a catalytic converter by reacting it with oxygen (O2). So, CO + 0.5 O2 = CO2.
(2) Limiting reactant (aka. "key component") - It is common to feed an excess of one of the components in order to promote complete conversion of the other components. The limiting reactant is the component that is NOT in excess. For this example, O2 is fed in excess so that CO conversion can be promoted. CO becomes the limiting reactant in that case and conversion must be computed relative to CO, NOT O2. If you think about it, expressing the conversion with respect to the excess component would mean that 100% conversion could result in a negative mole number for the limiting reactant. Such an implication is obviously physically impossible (and potentially embarrassing if you appear not to know that).
(3) %Excess - The number of moles of an excess component in the feed is (1+Xs) times the stoichiometric amount relative to the key component, where the stoichiometric amount is the number of moles necessary to perfectly balance the key component, and Xs is the fractional form of the %excess. For this example,  the stoichiometric ratio of CO:O2 would be 1:0.5 and for 50% excess, Xs = 0.50, and the actual ratio would be 1:0.75.
(4) %Conversion - the %conversion is the fraction of the entering amount of the limiting reactant that is transformed into product(s). Note that this might be different from the "extent of reaction," ξ. For example, if 50 moles/h of CO enter the reactor and the conversion is 90%, then 5 moles of CO exit the reactor. If you express the number of moles of CO as 50-ξ, you might conclude that the moles of CO exiting the reactor is 49.1. Take a minute to think about what the words mean before you start to calculate, then make a mental estimate of what the results should be, then get out your calculator. Another common mistake is to apply the % conversion to all the components, wrongly including the excess component. For example, if 45 moles of CO react, then 22.5 moles of O2 react. With 50% excess O2 in the feed, the O2 exiting should be 37.5-22.5=15, NOT 3.75. This is what it means to be careful and systematic. You must compute the conversion of limiting reactant first, then compute the conversion of other components relative to the limiting reactant.
(5) Inerts - These are components that may enter the reactor by coincidence or convenience but do not participate in the reaction. Therefore, their number of moles exiting the reactor is simply equal to their number of moles entering the reactor. A common mistake is to apply the %conversion to all components entering the reactor, including the inerts. In this example, the source of O2 is air, with roughly 4:1 ratio of nitrogen (N2) to O2. The N2 is inert.
(6) Total Pressure - Once the mole numbers and mole fractions have been computed, don't forget to multiply the mole fractions by the total pressure to get the partial pressure. The partial pressure is equal to the mole fraction only in the case that the reactor operates at 1.00 bar.

Comprehension Questions:

1. What is the value of the total pressure (bar) applied in the presentation of this example?
2. What equation is used to compute the mole number of O2? What is the final overall equation used to compute PO2?
3. Suppose 100 moles/h of ammonia (NH3) at 100bars is to be produced from N2 and hydrogen (H2) with 10% excess N2. Methane (CH4) is included with the N2+H2 as a result of the synthesis process with a ratio of 1:10 CH4:H2. (a) Write a stoichiometrically balanced equation (b) Identify the limiting reactant (c) Calculate the number of moles and partial pressures of each component entering the reactor. (d) Calculate the number of moles and partial pressures of each component exiting the reactor assuming 25% conversion.

02.01 Expansion/Contraction Work Click here. 100 2

Vocabulary in Sections 2.1-2.3: Forms of "Work." (uakron.edu, 11 min) Making cookies is hard work. In discussing work, we develop several shorthand terms to refer to specific common situations: expansion-contraction work, shaft work, flow work, stirring work, "lost" work. These terms comprise the headings of sections 2.1-2.3, but it is convenient to discuss them all at once. The important thing to remember is that work is really just force times distance, pure and simple. The shorthand terms are not intended to complicate the discussion, but to expedite the analysis of the energy balance. Developing some familiarity with the terms related to common daily experiences may help you to assimilate this new vocabulary. Sample calculations (13min) illustrate a remarkable difference when one is faced with gas compression vs. liquid pump work. 

Comprehension Questions:
1. How is "expansion-contraction" work related to force times distance?
2. What is the expression for "flow" work? Explain how it relates to force times distance for fluid flowing in a pipe.
3. What expression can we use for calculating "shaft" work, as in a pump or turbine? What is the technique of calculus to which it is related?

10.07 - Nonideal Systems Click here. 100 1

This screencast shows how to quickly visualize Pxy phase diagrams for nonideal systems using Excel (5min, uakron.edu). These sample calculations for methanol+benzene apply the simplest nonideal solution model: ΔHmix = A12*x1*x2. Rigors of this model are discussed in Chapter 11. Nevertheless, its basic elements are simple enough that they can be understood in Chapter 10. When x1=0 or x2=0, a pure fluid is indicated, corresponding to no mixing and zero heat of mixing. When A12=0, the ideal solution approximation is recovered. When A12>0, the model indicates an endothermic interaction (like 2-propanol+water, Fig. 10.8c), giving rise to "positive deviations from Raoult's Law." When A12<0, the model indicates an exothermic interaction (like acetone+chloroform, Fig. 10.9c), giving rise to "negative deviations from Raoult's Law." With this spreadsheet, you can quickly change your components and A12 values to see how the phase diagram changes and gain "hands-on" familiarity with the principles discussed in Section 10.7. 

Note: This is a companion file in a series. You may wish to choose your own order for viewing them. For example, you should implement the first three videos before implementing this one. Also, you might like to see how to quickly visualize the Txy analog of the Pxy phase diagram. If you see a phase diagram like the ones in section 11.8, you might want to learn about LLE phase diagrams. The links on the software tutorial present a summary of the techniques to be implemented throughout Unit3 in a quick access format that is more compact than what is presented elsewhere. Some students may find it helpful to refer to this compact list when they find themselves "not being able to find the forest because of all the trees."

Comprehension Questions:
1. Make a Pxy diagram for cyclohexane+toluene at 80C and A12=200. What kind of system is this?
2. Make a Pxy diagram for cyclohexane+benzene at 80C and A12=200. What kind of system is this?
3. Why does the system's qualitative behavior change so much when the components and model parameters are changed so little?

10.02 - Vapor-Liquid Equilibrium (VLE) Calculations Click here. 100 2

VLE Routines - General Strategies (4:49) (msu.edu)

Deciding which routine to use is more challenging than it appears. Also understanding the strategy used to solve the problems is extremely helpful in being able to develop the equations to solve instead of trying to memorize them.

05.4 - Refrigeration Click here. 100 2

Refrigeration Cycle Introduction (LearnChemE.com, 3min) explains each step in an ordinary vapor compression (OVC) refrigeration cycle and the energy balance for the step. You might also enjoy the more classical introduction (USAF, 11min) representing your tax dollars at work. The musical introduction is quite impressive and several common misconceptions are addressed near the end of the video.
Comprehension Questions: Assume zero subcooling and superheating in the condenser and evaporator.
1. An OVC operates with 43 C in the condenser and -33 C in the evaporator. Why is the condenser temperature higher than than the evaporator temperature? Shouldn't it be the other way around? Explain.
2. An OVC operates with 43 C in the condenser and -33 C in the evaporator. The operating fluid is R134a. Estimate the pressures in the condenser and evaporator using the table in Appendix E-12.
3. An OVC operates with 43 C in the condenser and -33 C in the evaporator. The operating fluid is R134a. Estimate the pressures in the condenser and evaporator using the chart in Appendix E-12.
4. An OVC operates with 43 C in the condenser and -33 C in the evaporator. The operating fluid is R134a. Estimate the pressures in the condenser and evaporator using Eqn 2.47.
5. An OVC operates with 43 C in the condenser and -33 C in the evaporator. Assume the compressor of the OVC cycle is adiabatic and reversible. What two variables (P,V,T,U,H,S) determine the state at the outlet of the compressor?

10.07 - Nonideal Systems Click here. 100 1

Nonideal Mixtures (4:58) (msu.edu)

Raoult's law is an easy way to calculate VLE, but it is inaccurate for most detailed VLE calculations. This screencast provides an overview of the problems, and introduces the concept of an azeotrope. The VLE K-ratio is shown to be less than one or greater than one dependenting on the overall system concentration relative to the azeotrope composition where K=1. The concept of positive and negative deviations is introduced.

07.06 Solving The Cubic EOS for Z Click here. 100 2

5. Peng Robinson Using Solver for PVT and Vapor Pressure - Excel (4:42) (msu.edu)

Describes use of the Goal Seek and Solver tools for Peng-Robinson PVT properties and vapor pressure.

Comprehension Questions:

1. Which of the following represents the vapor pressure for argon at 100K?
(a) 3.000 bars (b) 4.000 bars (c) 3.26903 bars.

Pages