Top-rated ScreenCasts

Text Section Link to original post Rating (out of 100) Number of votes Copy of rated post
10.02 - Vapor-Liquid Equilibrium (VLE) Calculations Click here. 100 2

VLE Routines - General Strategies (4:49) (

Deciding which routine to use is more challenging than it appears. Also understanding the strategy used to solve the problems is extremely helpful in being able to develop the equations to solve instead of trying to memorize them.

08.07 - Implementation of Departure Functions Click here. 100 1

Helmholtz Departure - PR EOS (, 11min) This lesson focuses first and foremost on deriving the Helmholtz departure function. It illustrates the application of integral tables from Apx. B and the importance of applying the limits of integration. It is the essential starting point for deriving properties involving entropy (S,A,G) of the PREOS, and it is a convenient starting point for deriving energetic properties (U,H).

04.09 Turbine calculations Click here. 100 2

Entropy Balances: Solving for Turbine Efficiency Sample Calculation. (, 10min) Steam turbines are very common in power generation cycles. Knowing how to compute the actual work, reversible work, and compare them is an elementary part of any engineering thermodynamics course.

Comprehension Questions:

1. An adiabatic turbine is supplied with steam at 2.0 MPa and 600°C and it exhausts at 98% quality and 24°C. (a) Compute the work output per kg of steam.(b) Compute the efficiency of the turbine.

2. A Rankine cycle operates on steam exiting the boiler at 7 MPa and 550°C and expanding to 60°C and 98% quality. Compute the efficiency of the turbine.

10.07 - Nonideal Systems Click here. 100 1

This screencast shows how to quickly visualize Pxy phase diagrams for nonideal systems using Excel (5min, These sample calculations for methanol+benzene apply the simplest nonideal solution model: ΔHmix = A12*x1*x2. Rigors of this model are discussed in Chapter 11. Nevertheless, its basic elements are simple enough that they can be understood in Chapter 10. When x1=0 or x2=0, a pure fluid is indicated, corresponding to no mixing and zero heat of mixing. When A12=0, the ideal solution approximation is recovered. When A12>0, the model indicates an endothermic interaction (like 2-propanol+water, Fig. 10.8c), giving rise to "positive deviations from Raoult's Law." When A12<0, the model indicates an exothermic interaction (like acetone+chloroform, Fig. 10.9c), giving rise to "negative deviations from Raoult's Law." With this spreadsheet, you can quickly change your components and A12 values to see how the phase diagram changes and gain "hands-on" familiarity with the principles discussed in Section 10.7. 

Note: This is a companion file in a series. You may wish to choose your own order for viewing them. For example, you should implement the first three videos before implementing this one. Also, you might like to see how to quickly visualize the Txy analog of the Pxy phase diagram. If you see a phase diagram like the ones in section 11.8, you might want to learn about LLE phase diagrams. The links on the software tutorial present a summary of the techniques to be implemented throughout Unit3 in a quick access format that is more compact than what is presented elsewhere. Some students may find it helpful to refer to this compact list when they find themselves "not being able to find the forest because of all the trees."

Comprehension Questions:
1. Make a Pxy diagram for cyclohexane+toluene at 80C and A12=200. What kind of system is this?
2. Make a Pxy diagram for cyclohexane+benzene at 80C and A12=200. What kind of system is this?
3. Why does the system's qualitative behavior change so much when the components and model parameters are changed so little?

10.08 - Concepts for Generalized Phase Equilibria Click here. 100 1

Concepts for General Phase Equilibria (12:33) (

The calculus used in Chapter 6 needs to be generalized to add composition dependence. Also, we introduce partial molar properties and composition derivatives that are not partial molar properties. We introduce chemical potential These concepts are used to show that the chemical potentials and component fugacities are used as criteria for phase equilibria.

05.2 - The Rankine cycle Click here. 100 1

Thermal Efficiency with a 1-Stage Rankine Cycle. (, 12min) Steam from a boiler enters a turbine at 350C and 1.2MPa and exits at 0.01MPa and saturated vapor; compute the thermal efficiency (ηθ) of the Rankine cycle based on this turbine. (Note that this is something quite different from the turbine's "expander" efficiency, ηE.) This kind of calculation is one of the elementary skills that should come out of any thermodynamics course. Try to pause the video often and work out the answer on your own whenever you think you can. You will learn much more about the kinds of mistakes you might make if you take your best shot, then use the video to check yourself. Then practice some more by picking out other boiler and condenser conditions and turbine efficiencies. FYI: the conditions of this problem should look familiar because they are the same as the turbine efficiency example in Chapter 4. That should make it easy for you to take your best shot.

Comprehension Questions:

1. The entropy balance is cited in this video, but never comes into play. Why not?

2. Steam from a boiler enters a turbine at 400C and 2.5 MPa and exits a 100% efficient turbine at 0.025MPa; compute the Rankine efficiency. Comment on the practicality of this process. (Hint: review Chapter 4 if you need help with turbine efficiency.)

09.05 - Fugacity and Fugacity Coefficient Click here. 100 1

What is fugacity? (10min) ( Defines fugacity in terms of Gibbs Energy and describes the need for defining this new property as a generalization of how pressure affects ideal gases.
Comprehension Questions
1. The phases in this video start with concentrations 0.0007kg/L and 1.0 kg/L, when not at equilibrium. What are the equilibrium concentrations?
2. Why is concentration an unreliable indicator for the direction of mass transfer?
3. Name two indicators for the direction of mass transfer that are superior to concentration.  

10.06 - Relating VLE to Distillation Click here. 100 1

Distillation is the primary choice for separations in the petrochemical industry. Because the majority of chemical processing involves separations/purifications, that makes distillation the biggest economic driver in all of chemical production. Therefore, it is very important for chemical engineers to understand how distillation works (21min, and how VLE plays the major role. This video is a bit long, but it puts into context how phase diagrams and thermodynamic properties relate to very important practical applications. You may find it helpful to reinforce the conceptual video with some sample calculations.(12min) At the end of the video, you should be able to answer the following:

Consider the acetone+ethanol system. Use SCVP (Eqn 2.47) to answer the following.

  1. Sketch a Txy diagram for acetone+ethanol at 1 bar with accurate Tsat's. Label completely.
  2. Which component pertaining to #1 would have enhanced concentration in the distillate?
  3. Accurately sketch the yx diagram pertaining to #1
  4. Use Raoult's Law to estimate αLH pertaining to #1.
  5. Use your sketch from 3 to estimate Nmin  to go from x1=0.1 to 0.9.
  6. Use the Fenske equation to estimate Nmin  with splits of 0.9 and 0.1.
10.08 - Concepts for Generalized Phase Equilibria Click here. 100 1

When expressing the derivative of the total Gibbs energy by chain rule, there is one particular partial derivative that relates to each component in the mixture: the "chemical potential." By adapting the derivation from Chapter 9 of the equilibrium constraint for pure fluids, we can show that the equilibrium constraint for mixtures is that the chemical potential of each component in each phase must be equal. That is fine mathematically but it is not very intuitive. By translating the chemical potential into a rigorous definition of fugacity of a component in a mixture, we recognize that an equivalent equilibrium constraint is that the fugacity of each component in each phase must be equal. (8min, Live, This offers the intuitive perspective of, say, molecules from the liquid escaping to the vapor and molecules from the vapor escaping to the liquid; when the "escaping tendencies" are equal, the phases experience no net change and we call that equilibrium. 

17.05 - Effect of Pressure, Inerts, Feed Ratios Click here. 100 1

Partial pressures and reactor sizing are among the keys to chemical engineering calculations (, 7 min, review from Section 1.6). Partial pressures (, 7 min) also play an essential role in reaction equilibrium calculations. Partial pressure calculations basically involve straightforward mass balances, but specific vocabulary and a need for systematic precision can cause difficulty. The calculations involve six elements that must be carefully computed:

(1) Stoichiometry - the reaction equation must be stoichiometrically balanced such that the number of atoms of each element are the same on both sides of the equation. This balance is achieved by adjusting the stoichiometric coefficients. The change in the number of moles of each component must be in correct stoichiometric proportions relative to the "key component." Inert compounds (see below) are NOT included in the stoichiometric equation. For the example in this presentation, the objective of the reactor is to oxidize carbon monoxide (CO) in a catalytic converter by reacting it with oxygen (O2). So, CO + 0.5 O2 = CO2.
(2) Limiting reactant (aka. "key component") - It is common to feed an excess of one of the components in order to promote complete conversion of the other components. The limiting reactant is the component that is NOT in excess. For this example, O2 is fed in excess so that CO conversion can be promoted. CO becomes the limiting reactant in that case and conversion must be computed relative to CO, NOT O2. If you think about it, expressing the conversion with respect to the excess component would mean that 100% conversion could result in a negative mole number for the limiting reactant. Such an implication is obviously physically impossible (and potentially embarrassing if you appear not to know that).
(3) %Excess - The number of moles of an excess component in the feed is (1+Xs) times the stoichiometric amount relative to the key component, where the stoichiometric amount is the number of moles necessary to perfectly balance the key component, and Xs is the fractional form of the %excess. For this example,  the stoichiometric ratio of CO:O2 would be 1:0.5 and for 50% excess, Xs = 0.50, and the actual ratio would be 1:0.75.
(4) %Conversion - the %conversion is the fraction of the entering amount of the limiting reactant that is transformed into product(s). Note that this might be different from the "extent of reaction," ξ. For example, if 50 moles/h of CO enter the reactor and the conversion is 90%, then 5 moles of CO exit the reactor. If you express the number of moles of CO as 50-ξ, you might conclude that the moles of CO exiting the reactor is 49.1. Take a minute to think about what the words mean before you start to calculate, then make a mental estimate of what the results should be, then get out your calculator. Another common mistake is to apply the % conversion to all the components, wrongly including the excess component. For example, if 45 moles of CO react, then 22.5 moles of O2 react. With 50% excess O2 in the feed, the O2 exiting should be 37.5-22.5=15, NOT 3.75. This is what it means to be careful and systematic. You must compute the conversion of limiting reactant first, then compute the conversion of other components relative to the limiting reactant.
(5) Inerts - These are components that may enter the reactor by coincidence or convenience but do not participate in the reaction. Therefore, their number of moles exiting the reactor is simply equal to their number of moles entering the reactor. A common mistake is to apply the %conversion to all components entering the reactor, including the inerts. In this example, the source of O2 is air, with roughly 4:1 ratio of nitrogen (N2) to O2. The N2 is inert.
(6) Total Pressure - Once the mole numbers and mole fractions have been computed, don't forget to multiply the mole fractions by the total pressure to get the partial pressure. The partial pressure is equal to the mole fraction only in the case that the reactor operates at 1.00 bar.

Comprehension Questions:

1. What is the value of the total pressure (bar) applied in the presentation of this example?
2. What equation is used to compute the mole number of O2? What is the final overall equation used to compute PO2?
3. Suppose 100 moles/h of ammonia (NH3) at 100bars is to be produced from N2 and hydrogen (H2) with 10% excess N2. Methane (CH4) is included with the N2+H2 as a result of the synthesis process with a ratio of 1:10 CH4:H2. (a) Write a stoichiometrically balanced equation (b) Identify the limiting reactant (c) Calculate the number of moles and partial pressures of each component entering the reactor. (d) Calculate the number of moles and partial pressures of each component exiting the reactor assuming 25% conversion.