Toprated ScreenCasts
Text Section  Link to original post  Rating (out of 100)  Number of votes  Copy of rated post 

01.6 Summary  Click here.  100  1 
The objectives for Chapter 1 were: 1. Explain the definitions and relations between temperature, molecular kinetic energy, To these, we could add expressing and explaining the first and second laws. Make a quick list of these expressions and explanations in your own words, including cartoons or illustrations as you see fit, starting with the first and second laws. 
14.09  Numerical procedures for binary, ternary LLE  Click here.  100  1 
LLE flash using Matlab/Chap14/LLEflash.m (5:54) (msu.edu) An overview of the LLE flash routine in Matlab, including an overview of the program logic and then an example of how to run the program. See also  Supplement on Iteration of LLE with Excel and Matlab. 
13.04  UNIQUAC  Click here.  100  2 
Volumes and Areas from Group Contributions (3:04) Group contributions are used widely in property prediction. The volumes and surface areas have been determined by xray data and hightemperature collision data. The UNIQUAC and UNIFAC activity coefficient methods use these quantities to calculation volume fractions and surface area fractions. The assignment of functional groups for a molecule must be done carefully to assure agreement with the groups used by the model developers. Comprehension Questions: 1. Estimate R and Q for 1,4 dihydroxy benzene. 2. Estimate R and Q for npropyl alcohol and compare them to the values for IPA. 3. Estimate R and Q for methylnpropyl ketone. 
17.07  Temperature Dependence of Ka  Click here.  100  2 
Example 17.4 and 17.5 solved using Kcalc.xlsx (6:01) (msu.edu) The full form of the temperature dependence of Ka is implemented in Kcalc.xlsx and Kcalc.m. This screecast covers the use of Kcalc.xlsx for Example 17.4 and Example 17.5 of the textbook. Comprehension Questions: 1. CO and H2 are fed in a 2:1 ratio to a reactor at 500K and 20 bars with a catalyst that favors only CH3OH as its product. Calculate ΔG_{R}º and ΔH_{R}º. 
11.02  Calculations with Activity Coefficients  Click here.  100  2 
This example shows how to incorporate activity calculations into Excel for solutions that follow the Margules 1parameter (M1) model.(9min, uakron.edu) You should be able to adapt this procedure along with the procedure for the multicomponent ideal solutions to create a multicomponent M1 model. If you are having trouble, the video for the multicomponent SSCED model illustrates a very similar procedure. You can check your answers by putting in the same component twice. For example, instead of an equimolar binary mixture, input a quaternary mixture with 0.25 moles of methanol, 0.25 methanol (ie. type it as if it was another component), 0.25 of benzene and 0.25 of benzene. If you don't get the same results as for the binary equimolar system, check your calculations.Note: This is a companion file in a series. You may wish to choose your own order for viewing them. For example, you should implement the first three videos before implementing this one. Also, you might like to see how to quickly visualize the Txy analog of the Pxy phase diagram. If you see a phase diagram like the ones in section 11.8, you might want to learn about LLE phase diagrams. The links on the software tutorial present a summary of the techniques to be implemented throughout Unit3 in a quick access format that is more compact than what is presented elsewhere. Some students may find it helpful to refer to this compact list when they find themselves "not being able to find the forest because of all the trees." Comprehension Questions: Assume the SCVP model (Eq. 2.47). 
12.04  The FloryHuggins Model  Click here.  100  2 
The Flory and FloryHuggins Models (7:05) (msu.edu) Flory recognized the importance of molecular size on entropy, and the Flory equation is an important building block for many equations in Chapter 13. Flory introduced the importance of free volume. The FloryHuggins model combines the Flory equation with the ScatchardHildebrand model using the degree of polymerization and the parameter χ. The FloryHuggins model is used widely in the polymer industry. Comprehension Questions: Assume δ_{P}=δ_{S} for polystyrene, where δ_{S} is the solubility parameter for styrene. Also, polystyrene typically has a molecular weight of about 15,000. Room temperature is 25°C. 1. Estimate the infinite dilution activity coefficient of styrene in polystyrene. 
03.3  Introduction to Mixture Properties  Click here.  100  1 
Props.xlsx has a lot of data, but usually we are only interested in a few components at a time. Adding a few lines at the top and applying the VLookup function makes it easy to tabulate the properties you need. (8min, uakron.edu) Comprehension questions 1. Download the latest version of Props.xlsx from sourceforge. Add lines to support 8 components of interest and cells to compute Psat given T as input and Tsat given P as input by appropriately arranging Eqn. 2.47. Add a column for computing Hvap at Tsat for each component by Eqn. 2.45. 2. Insert a sheet(tab) called Hrxn in Props.xlsx. Types the names for components in the reaction CO+0.5O2=CO2. Use VLookup to tabulate the Hf values for each component. To the left of the name column, insert cells to represent the stoichiometric coefficients. Then calculate the heat of reaction by using the sumproduct() function applied to the stoichiometric coefficients and Hf values. Check your result with a hand calculation. 3. Download the latest versions of PREOS.xls and Props.xlsx from sourceforge. Update the Props tab appropriately. Then implement the VLookup function on the ThermoProps tab of PREOS so all you need to do is type the name of the compound of interest in order to update the ThermoProps sheet to all properties of interest. We discuss how to use PREOS.xls to solve problems in Unit II. 
10.06  Relating VLE to Distillation  Click here.  100  1 
Distillation is the primary choice for separations in the petrochemical industry. Because the majority of chemical processing involves separations/purifications, that makes distillation the biggest economic driver in all of chemical production. Therefore, it is very important for chemical engineers to understand how distillation works (21min, uakron.edu) and how VLE plays the major role. This video is a bit long, but it puts into context how phase diagrams and thermodynamic properties relate to very important practical applications. You may find it helpful to reinforce the conceptual video with some sample calculations.(12min) At the end of the video, you should be able to answer the following: Consider the acetone+ethanol system. Use SCVP (Eqn 2.47) to answer the following.

10.08  Concepts for Generalized Phase Equilibria  Click here.  100  1 
When expressing the derivative of the total Gibbs energy by chain rule, there is one particular partial derivative that relates to each component in the mixture: the "chemical potential." By adapting the derivation from Chapter 9 of the equilibrium constraint for pure fluids, we can show that the equilibrium constraint for mixtures is that the chemical potential of each component in each phase must be equal. That is fine mathematically but it is not very intuitive. By translating the chemical potential into a rigorous definition of fugacity of a component in a mixture, we recognize that an equivalent equilibrium constraint is that the fugacity of each component in each phase must be equal. (8min, Live, uakron.edu) This offers the intuitive perspective of, say, molecules from the liquid escaping to the vapor and molecules from the vapor escaping to the liquid; when the "escaping tendencies" are equal, the phases experience no net change and we call that equilibrium. 
09.05  Fugacity and Fugacity Coefficient  Click here.  100  1 
In a contest for "the most hated word in Chemical Engineering," fugacity won by a landslide. This video (15min, uakron.edu) reviews how the term was developed and why it's not really as bad as all that. In fact, it's a nice word that sets the stage for all of phase and reaction equilibrium with a straightforward extension of the same conceptual basis to mixtures. On second thought, perhaps the power of that conceptual basis and all that it implies is what really intimidates new students. Many perspectives have been offered to help overcome the frustration that students feel toward fugacity. If you like a comic book perspective, even that is available. Comprehension Questions: 1.What is the fugacity of a vapor phase component in a mixture according to Raoult's law? 