Toprated ScreenCasts
Text Section  Link to original post  Rating (out of 100)  Number of votes  Copy of rated post 

09.04  Changes in Gibbs Energy with Pressure  Click here.  100  1 
Gibbs Energy  Nuts to Soup. (learncheme.com, 8min) It is straightforward to start from the definition of Gibbs Energy and derive all the changes in Gibbs energy. These can be graphed for H2O to see how familiar quantities from the steam tables relate to changes in this unfamiliar property. 
10.07  Nonideal Systems  Click here.  100  1 
Nonideal Mixtures (4:58) (msu.edu) Raoult's law is an easy way to calculate VLE, but it is inaccurate for most detailed VLE calculations. This screencast provides an overview of the problems, and introduces the concept of an azeotrope. The VLE Kratio is shown to be less than one or greater than one dependenting on the overall system concentration relative to the azeotrope composition where K=1. The concept of positive and negative deviations is introduced. 
01.5 Real Fluids and Tabulated Properties  Click here.  100  1 
When you use a spreadsheet like Steam.xlsx(uakron, 15min), interpolation can be greatly expedited. It is recommended that you enable the solver before applying Steam.xls. Comprehension Questions: 
01.6 Summary  Click here.  100  1 
The objectives for Chapter 1 were: 1. Explain the definitions and relations between temperature, molecular kinetic energy, To these, we could add expressing and explaining the first and second laws. Make a quick list of these expressions and explanations in your own words, including cartoons or illustrations as you see fit, starting with the first and second laws. 
10.06  Relating VLE to Distillation  Click here.  100  2 
Distillation is the primary choice for separations in the petrochemical industry. Because the majority of chemical processing involves separations/purifications, that makes distillation the biggest economic driver in all of chemical production. Therefore, it is very important for chemical engineers to understand how distillation works (21min, uakron.edu) and how VLE plays the major role. This video is a bit long, but it puts into context how phase diagrams and thermodynamic properties relate to very important practical applications. You may find it helpful to reinforce the conceptual video with some sample calculations.(12min) At the end of the video, you should be able to answer the following: Consider the acetone+ethanol system. Use SCVP (Eqn 2.47) to answer the following.

01.6 Summary  Click here.  100  1 
Keys to the Kingdom of Chemical Engineering (uakron.edu, 11min) Sometimes it helps to reduce a subject to its simplest key elements in order to "see the forest instead of the trees." In this presentation, the entire subject of Chemical Engineering is reduced to three key elements: sizing a reactor (Uakron.edu, 7min), sizing a distillation column (uakron.edu, 9min), and sizing a heat exchanger (uakron.edu, 9min). In principle, these elements involve the independent subjects of kinetics, thermodynamics, and transport phenomena. In reality, each element involves thermodynamics to some extent. Distillation involves thermodynamics in the most obvious way because relative volatility and activity coefficients are rarely discussed in a kinetics or transport course. In kinetics, however, the rate of reaction depends on the partial pressures of the reactants and their nearness to the equilibrium concentrations, which are thermodynamical quantities. In heat exchangers, the heat transfer coefficient is important, but we also need to know the temperatures for the source and sink of the heat transfer; these temperatures are often dictated by thermodynamical constraints like the boiling temperature or boiler temperature required to run a Rankine cycle (cf. Chapter 5). In case you are wondering about the subject of "mass and energy balances," the conservation of mass is much like the conservation of energy; therefore, we subsume this subject under the general umbrella of thermodynamics. Understanding the distinctions between thermodynamics and other subjects should help you to frame a place for this knowledge in your mind. Understanding the interconnection of thermodynamics with subjects to be covered later should help you to appreciate the necessity of filing this knowledge away for the long term, such that it can be retrieved at any time in the future. If you would like a little more practice with reactor mass balances and partial pressure, more screencasts are available from LearnChemE.com, MichiganTech, and popular chemistry websites. 
10.08  Concepts for Generalized Phase Equilibria  Click here.  100  1 
When expressing the derivative of the total Gibbs energy by chain rule, there is one particular partial derivative that relates to each component in the mixture: the "chemical potential." By adapting the derivation from Chapter 9 of the equilibrium constraint for pure fluids, we can show that the equilibrium constraint for mixtures is that the chemical potential of each component in each phase must be equal. That is fine mathematically but it is not very intuitive. By translating the chemical potential into a rigorous definition of fugacity of a component in a mixture, we recognize that an equivalent equilibrium constraint is that the fugacity of each component in each phase must be equal. (8min, Live, uakron.edu) This offers the intuitive perspective of, say, molecules from the liquid escaping to the vapor and molecules from the vapor escaping to the liquid; when the "escaping tendencies" are equal, the phases experience no net change and we call that equilibrium. 
04.09 Turbine calculations  Click here.  100  2 
Entropy Balances: Solving for Turbine Efficiency Sample Calculation. (uakron.edu, 10min) Steam turbines are very common in power generation cycles. Knowing how to compute the actual work, reversible work, and compare them is an elementary part of any engineering thermodynamics course. Comprehension Questions: 1. An adiabatic turbine is supplied with steam at 2.0 MPa and 600°C and it exhausts at 98% quality and 24°C. (a) Compute the work output per kg of steam.(b) Compute the efficiency of the turbine. 2. A Rankine cycle operates on steam exiting the boiler at 7 MPa and 550°C and expanding to 60°C and 98% quality. Compute the efficiency of the turbine. 
13.04  UNIQUAC  Click here.  100  3 
Volumes and Areas from Group Contributions (3:04) Group contributions are used widely in property prediction. The volumes and surface areas have been determined by xray data and hightemperature collision data. The UNIQUAC and UNIFAC activity coefficient methods use these quantities to calculation volume fractions and surface area fractions. The assignment of functional groups for a molecule must be done carefully to assure agreement with the groups used by the model developers. Comprehension Questions: 1. Estimate R and Q for 1,4 dihydroxy benzene. 2. Estimate R and Q for npropyl alcohol and compare them to the values for IPA. 3. Estimate R and Q for methylnpropyl ketone. 
10.08  Concepts for Generalized Phase Equilibria  Click here.  100  1 
Concepts for General Phase Equilibria (12:33) (msu.edu) The calculus used in Chapter 6 needs to be generalized to add composition dependence. Also, we introduce partial molar properties and composition derivatives that are not partial molar properties. We introduce chemical potential These concepts are used to show that the chemical potentials and component fugacities are used as criteria for phase equilibria. 