# Top-rated ScreenCasts

Text Section Link to original post Rating (out of 100) Number of votes Copy of rated post

The Flory and Flory-Huggins Models (7:05) (msu.edu)

Flory recognized the importance of molecular size on entropy, and the Flory equation is an important building block for many equations in Chapter 13. Flory introduced the importance of free volume. The Flory-Huggins model combines the Flory equation with the Scatchard-Hildebrand model using the degree of polymerization and the parameter χ. The Flory-Huggins model is used widely in the polymer industry.

Comprehension Questions:

Assume δP=δS for polystyrene, where δS is the solubility parameter for styrene. Also, polystyrene typically has a molecular weight of about 15,000. Room temperature is 25°C.

1. Estimate the infinite dilution activity coefficient of styrene in polystyrene.
2. Estimate the infinite dilution activity coefficient of toluene in polystyrene.
3. Estimate the infinite dilution activity coefficient of acetone in polystyrene.
4. Which of the above would be the "best" solvent for polystyrene? Explain quantitatively.

Derive the internal energy departure function (uakron.edu, 20min) for the following EOS:
P = (RT(1+V1.5)/V1.5)*(1+sqrt(V)) - a/(V^2T^1.3)/(1+sqrt(V)) This sample derivation is more complicated than average, but the usual procedure still works. We begin by rearranging to obtain an expression for Z and finding the Helmholtz departure, then differentiating to get the internal energy.

Comprehension: Given (A-Aig)TV/RT = -2ln(1-ηP) - 16.49ηPβε/[1-βε(1-2ηP)/(1+2ηP)^2 ]

1. Derive the internal energy departure function.

2. Derive the expression for the compressibility factor.

3. Solve the EOS for Zc.

Refrigeration Cycle Introduction (LearnChemE.com, 3min) explains each step in an ordinary vapor compression (OVC) refrigeration cycle and the energy balance for the step. You might also enjoy the more classical introduction (USAF, 11min) representing your tax dollars at work. The musical introduction is quite impressive and several common misconceptions are addressed near the end of the video.
Comprehension Questions: Assume zero subcooling and superheating in the condenser and evaporator.
1. An OVC operates with 43 C in the condenser and -33 C in the evaporator. Why is the condenser temperature higher than than the evaporator temperature? Shouldn't it be the other way around? Explain.
2. An OVC operates with 43 C in the condenser and -33 C in the evaporator. The operating fluid is R134a. Estimate the pressures in the condenser and evaporator using the table in Appendix E-12.
3. An OVC operates with 43 C in the condenser and -33 C in the evaporator. The operating fluid is R134a. Estimate the pressures in the condenser and evaporator using the chart in Appendix E-12.
4. An OVC operates with 43 C in the condenser and -33 C in the evaporator. The operating fluid is R134a. Estimate the pressures in the condenser and evaporator using Eqn 2.47.
5. An OVC operates with 43 C in the condenser and -33 C in the evaporator. Assume the compressor of the OVC cycle is adiabatic and reversible. What two variables (P,V,T,U,H,S) determine the state at the outlet of the compressor?

Example 17.4 and 17.5 solved using Kcalc.xlsx (6:01) (msu.edu)

The full form of the temperature dependence of Ka is implemented in Kcalc.xlsx and Kcalc.m. This screecast covers the use of Kcalc.xlsx for Example 17.4 and Example 17.5 of the textbook.

Comprehension Questions:

1. CO and H2 are fed in a 2:1 ratio to a reactor at 500K and 20 bars with a catalyst that favors only CH3OH as its product. Calculate ΔGRº and ΔHRº.
2. CO and H2 are fed in a 1:1 ratio to a reactor at 500K and 20 bars with a catalyst that favors only CH3OH as its product. Calculate ΔGRº and ΔHRº.
3. CO and H2 are fed in a 1:1 ratio to a reactor at 600K and 20 bars with a catalyst that favors only CH3OH as its product. Calculate ΔGRº and ΔHRº.
4. CO and H2 are fed in a 1:1 ratio to a reactor at 500K and 20 bars with a catalyst that favors only CH3OH as its product. Calculate ΔGTº and ΔHTº. Check your answer for ΔGTº using the value given for Ka in Example 17.1.
5. CO and H2 are fed in a 1:1 ratio to a reactor at 600K and 10 bars with a catalyst that favors only CH3OH as its product. Calculate Ka, ΔGTº and ΔHTº.
6. CH3OH is fed to a reactor at 200ºC and 1 bar with a catalyst that produces CO and H2. Calculate Ka, ΔGTº and ΔHTº for this reaction and compare to the literature values given in Example 17.6 of Section 17.10.
7. CH3OH is fed to a reactor at 300ºC and 1 bar with a catalyst that produces CO and H2. Calculate Ka for this reaction and compare to the value given in Example 17.6 of Section 17.10. Give two reasons why the two estimates are not identical.

Rankine Cycle Introduction (LearnChemE.com, 4min) The Carnot cycle becomes impractical for common large scale application, primarily because H2O is the most convenient working fluid for such a process. When working with H2O, an isentropic turbine could easily take you from a superheated region to a low quality steam condition, essentially forming large rain drops. To understand how this might be undesirable, imagine yourself riding through a heavy rain storm at 60 mph with your head outside the window. Now imagine doing it 24/7/365 for 10 years; that's how long a high-precision, maximally efficient turbine should operate to recover its price of investment. Next you might ask why not use a different working fluid that does not condense, like air or CO2. The main problem is that the heat transfer coefficients of gases like these are about 40 times smaller that those for boiling and condensing H2O. That means that the heat exchangers would need to be roughly 40 times larger. As it is now, the cooling tower of a nuclear power plant is the main thing that you see on the horizon when approaching from far away. If that heat exchanger was 40 times larger... that would be large. And then we would need a similar one for the nuclear core. Power cycles based on heating gases do exist, but they are for relatively small power generators.
With this background, it may be helpful to review the relation between the Carnot and Rankine cycles. (LearnChemE.com, 6min) The Carnot cycle is an idealized conceptual process in the sense that it provides the maximum possible fractional conversion of heat into work (aka. thermal efficiency, ηθ).
Comprehension Questions:
1. Why is the Carnot cycle impractical when it comes to running steam through a turbine? How does the Rankine cycle solve this problem?
2. Why is the Carnot cycle impractical when it comes to running steam through a pump? How does the Rankine cycle solve this problem?
3. It is obvious which temperatures are the "high" and "low" temperatures in the Carnot cycle, but not so much in the Rankine cycle. The "boiler" in a Rankine cycle actually consists of "simple boiling" where the saturated liquid is converted to saturated vapor, and superheating where the saturated vapor is raised to the temperature entering the turbine. When comparing the thermal efficiency of a Rankine cycle to the Carnot efficiency, should we substitute the temperature during "simple" boiling, or the temperature entering the turbine into the formula for the Carnot efficiency? Explain.

6. Solving for density (uakron.edu, 9min) An alternative to solving directly for Z is to solve for density then compute Z=P/(ρRT). This requires iterative solution and it is not very expedient for repetitive calculations, but it requires no rearrangement of the EOS and it is easy to visualize. This sample calculation is illustrated here for the vdW EOS, solving for the density of propane as: (a) liquid 25C,11bars (b) liquid 62C,35bars (c) vapor at 80C and 30bars.

Comprehension Questions:

1. Solve for the liquid density (mol/cm3) of n-pentane at 62C and 2.5 bars using the vdW EOS.
2. Solve for the Z-factor of liquid n-pentane at 62C and 2.5 bars using the vdW EOS.
3. What's the value of the Z-factor at 80C and 30 bars according to this presentation?

Peng-Robinson Properties - Excel (6:56) (msu.edu)

Provides an overview of using the Peng-Robinson spreadsheet Preos.xlsx for calculation of H, U, S and use of solver.

Comprehension Questions:

1. For liquid propane at 298K and 1 MPa, and a reference state of 298K and 1bar propane vapor, what is the ideal gas contribution to "H-HR" (J/mol)?
2. For liquid propane at 298K and 1 MPa, and a reference state of 298K and 1bar propane vapor, what is the ideal gas departure contribution: "H-Hig" (J/mol)?
3. For liquid propane at 298K and 1 MPa, and a reference state of 298K and 1bar propane vapor, what is the tabulated value of "H" (J/mol)?
4. Explain the similarity and difference between the numerical values of "H" and "H-Hig".
5. Ethane at 350K and 5 bars is expanded through an adiabatic, reversible turbine to 1 bar. What is the temperature (K) at the turbine outlet?

You can customize Kcalc.xlsx (uakron.edu, 17min) to facilitate whatever calculations you may need to perform. This presentation shows how to implement VLOOKUP to automatically load the relevant Hf, Gf, and Cp values. It also shows how to automatically use the Cp/R value when a,b,c,d values for Cp are not available. Finally, it shows how a fairly general table of inlet flows, temperatures, and pressures can be used to set up the equilibrium conversion calculation. The initial set up is demonstrated for the dimethyl ether process, then revised to initiate solution of Example 17.9 for ammonia synthesis.

Comprehension Questions:

1. The video shows how the shortcut Van't Hof equation can be written as lnKa=A+B/T. What are the values of A and B for the dimethyl ether process when a reference temperature of 633K is used?
2. The video shows how the shortcut Van't Hof equation can be written as lnKa=A+B/T. What are the values of A and B for the ammonia synthesis process when a reference temperature of 600K is used?

Departure Function Derivation Principles (8:03) (msu.edu)
This screencast covers sections 8.2 - 8.8. Concepts of using the equation of state to evaluate departure functions. The screencasts also discusses the choice of density integrals or pressure integrals. The use of a reference state is discussed.