Top-rated ScreenCasts

Text Section Link to original post Rating (out of 100) Number of votes Copy of rated post
12.05 - MOSCED and SSCED Theory Click here. 20 1

There are so many activity models, how can you keep them straight? This video shows how MAB, SSCED, and Scatchard-Hildebrand models are all closely related.(9min,uakron.edu) By changing the assumptions, one model can be transformed into the other. So focus on remembering one model very well, then remember the small adjustments to obtain the other models.

Comprehension Questions:
1. Suppose we are trying to find the solvent most compatible with dilute ethanol. Which of the following is most compatible according to the MAB model?  (a) water (b) benzene (c) n-octanol.
2. Suppose we are trying to find the solvent most compatible with dilute ethanol. Which of the following is most compatible according to the ScHil model?  (a) water (b) benzene (c) n-octanol.
3. Suppose we are trying to find the solvent most compatible with dilute ethanol. Which of the following is most compatible according to the SSCED model?  (a) water (b) benzene (c) n-octanol. (Hint: consider the infinite dilution activity coefficient.)

11.05 - Modified Raoult's Law and Excess Gibbs Energy Click here. 20 1

Extending the M1 derivation of the activity coefficient to multicomponent mixtures  (uakron.edu, 14min) is straightforward but requires careful attention to the meaning of the subscripts and notation. It is a good warmup for derivations of more sophisticated activity models. This presentation begins with a brief review of the M1 model and its relation to the Gibbs excess function, then systematically explains the notation as it extends from the binary case to multiple components.

Comprehension Questions
1. Derive the activity coefficient for the multicomponent M2 model.
2. Derive the activity coefficient for the multicomponent Redlich-Kister model.

08.07 - Implementation of Departure Functions Click here. 20 2

Helmholtz Energy - Mother of All Departure Functions. (uakron.edu, 10min) This screencast begins with a brief perspective on energy and free energy as they relate to concepts from Chapter 1 and through to the end of the course. Then it focuses on how the Helmholtz departure function is one of the most powerful due to the relations that can be developed from it. The Helmholtz departure is relatively easy to develop from a density integral of the compressibility factor. Then the internal energy departure can be derived from a temperature derivative. Alternatively, if the internal energy departure is given, the Helmholtz energy can be inferred by integration, and the compressibility factor can be derived from a density derivative. 
Comprehension Questions: (Hint: some of the following may be answered in later videos below.)
1. Write an equation that takes you from the Helmholtz energy departure function to Z.
2. Write an equation that takes you from the Helmholtz energy departure function to (U-Uig)/RT.
3. Derive the internal energy departure function for the vdW EOS using Eqn. 8.22.
4. Derive the Helmholtz energy departure function for the vdW EOS using Eqn. 8.25.
5. Use the result of #4 to derive the internal energy departure function for the vdW EOS.

08.07 - Implementation of Departure Functions Click here. 20 1

Helmholtz Example - vdW EOS (uakron.edu, 18min) This video begins with a brief review of the connection of the Helmholtz departure with all other departures then shows four sample derivations assuming that Z is given by the vdW EOS: (1) the Helmholtz departure , (2) the internal energy departure from the Helmholtz departure. (3) the Helmholtz energy from the internal energy (4) the Z factor from the Helmholtz departure. The procedures illustrated here can be applied to any EOS starting with any part (U, A, or Z) as given to derive any other departure: ZUHAGS.
Comprehension Questions: The virial EOS for SW fluids can be written as: Z = 1 + Bρ/RT where B = 4b+[4b(λ^3-1)] [exp(βε)-1], b = πNAσ^3/6.
1. Derive an expression for the Helmholtz departure.
2. Use the result of #1 to derive the internal energy departure.
3. Use the result of #2 to derive the Helmholtz departure. What is the integration constant in this case?

07.06 Solving The Cubic EOS for Z Click here. 20 2

Using a macro to create an isotherm (Excel) (msu.edu, 14:31) The tabular Excel display is convenient for viewing all the intermediate values, but no so good for building a table such as for an isotherm. This screencast shows how to write/edit a macro to build a table by copying/pasting values. The screencast creates an isotherm on a Z vs. Pr plot over 0.01 < Pr < 10.

08.07 - Implementation of Departure Functions Click here. 20 3

Helmholtz Example - Modified vdW EOS (uakron.edu, 13min) A sample derivation of the Helmholtz departure implicit in the Gibbs departure given Z = 1 + abρ/(1+)^3 - (9.5aρ/RT)/(1+aρ/RT). Note that the limits of integration matter for this EOS. The audio is inferior for this live video, but it responds to typical questions and confusion from students in the audience. Some students might find it helpful to hear the kinds of questions that students ask. The responses slow the derivation down so that no steps are skipped and key steps are reiterated multiple times. Just turn the volume up!
Comprehension questions:
1. Which part of this EOS is non-zero at the zero density limit of integration?
2. Is there a sign error on one of the terms in this video? Check the derivation independently.
3. Derive the Helmholtz departure given Z = 1 + 4bρ/(1-)2 - (9.5aρ/RT)/{1-a/bRT[1-4bρ+4(bρ)2]}.
4. Derive the Helmholtz departure given Z = 1 + 4bρ/(1-2) - (9.5aρ/RT){1+4/bRT[1-2(bρ)2]}/{1-a/bRT[1-4bρ+4(bρ)2]})/{1-a/bRT[1-4bρ+4(bρ)2]}

09.10 - Saturation Conditions from an Equation of State Click here. 20 1

Solving for the saturation pressure using PREOS.xls simply involves setting the temperature and guessing pressure until the fugacities in vapor and liquid are equal. (5min, learncheme.com) It is not shown, but it would also be easy to set the pressure and guess temperature until the fugacities were equal in order to solve for saturation temperature. One added suggestion would be to type in the shortcut vapor pressure (SCVP) equation to give an initial estimate of the pressure. Rearranging the SCVP can also give an initial guess for Tsat when given P. This presentation illustrates a sample calculation for toluene to explore when the vapor is the stable, when the liquid is the stable phase, and when the phases are roughly in equilibrium.

Comprehension Questions:

1. Estimate the vapor pressure (MPa) of n-pentane at 450K according to the PREOS. Compare your result to the value from Eq. 2.47 (SCVP) and to the Antoine equation using the coefficients given in Appendix E. What do you think explains the observations that you make?
2. Estimate the saturation temperature (K) of n-pentane at 3.3 MPa according to the PREOS. Compare your result to the value from Eq. 2.47 (SCVP) and to the Antoine equation using the coefficients given in Appendix E. What do you think explains the observations that you make?
3. Estimate the vapor pressure (MPa) of n-pentane at 223K according to the PREOS. Compare your result to the value from Eq. 2.47 (SCVP) and to the Antoine equation using the coefficients given in Appendix E. What do you think explains the observations that you make?
4. Estimate the saturation temperature (K) of n-pentane at 3.3 kPa according to the PREOS. Compare your result to the value from Eq. 2.47 (SCVP) and to the Antoine equation using the coefficients given in Appendix E. What do you think explains the observations that you make?

17.12 Energy Balances for Reactions Click here. 20 1

Equilibrium constants and adiabatic reactor calculations with Excel (uakron.edu, 6 min) We previously discussed adiabatic reactor calculations in Section 3.6 with application to the dimethyl ether process. At that time, we accepted the expression for equilibrium constant as given. In Chapter 17, we must recognize how to compute the equilibrium constant for ourselves. This presentation illustrates the calculations for Example 17.9. These kinds of calculations often occur in the context of an overall process, rather than in isolation. Therefore, the presentation shows how to apply Eqn 3.5b with pathway 2.6c to characterize the enthalpies of process streams and solve for the extent of reaction and adiabatic outlet temperature simultaneously.

Comprehension Questions:

1. Suppose the reactor inlet feed was: kmol/hr of 110 N2, 300 H2, 15NH3 and 16 CH4. Solve for the adiabatic reactor temperature and extent of reaction in that case.
2. Suppose the actual conversion was only 80% of the equilibrium conversion and the inlet feed was the same as given in part 1. Solve for the adiabatic reactor temperature and extent of reaction in that case.
3. Compute the stream attributes for this entire process assuming 85% of the equilibrium conversion and a feed (kmol/h) of 105 N2, 300 H2, 20 CH4 at 10bars and 200C. The distillation column operates at 10 bars with a partial condenser and splits of 99.99% on N2 and 2% on NH3. The recycle ratio is 19:1. Assume the compressors are 100% efficient and the reactor operates adiabatically with an inlet temperature of 400K and a pressure of 100bars. Report the molar flow rates of all outlet stream components.

07.08 Matching The Critical Point Click here. 20 1

Visualizing the vdW EOS (uakron.edu, 16min) Building on solving for density, describes plotting dimensionless isotherms of the vdW EOS for methane at 5 temperatures, two subcritical, two supercritical, and one at the critical condition. From these isotherms in dimensionless form, it is possible to identify the critical point as the location of the inflection point where the temperature first exits the 3-root region. This method can be adapted to any equation of state, whether it is cubic or not. The illustration was adapted from a sample test problem. This screencast also addresses the meaning of the region where the pressure goes negative, with a (possibly disturbing) story about a blood-sucking octopus.

Comprehension Questions:

1. What are the dimensions of the quantity (bP/RT)?
2. Starting with the expression for Z(ρ,T), rewrite the vdW EOS to solve for the quantity (bP/RT) in terms of () and (a/bRT).
3. Consider the following EOS: Z = 1 + 2/(1-2) - (a/bRT) /(1-)2. Estimate the value of bPc/(RTc) for this EOS.
4. Consider the following EOS: Z = 1 + 2/(1-2) - (a/bRT) /(1-)2. Estimate the value of (a/bRTc) for this EOS.
5. Compute the values of a(J-cm3/mol2) and b(cm3/mol) for methane according to this new EOS.

Pages