# Top-rated ScreenCasts

Text Section | Link to original post | Rating (out of 100) | Number of votes | Copy of rated post |
---|---|---|---|---|

01.6 Summary | Click here. | 100 | 1 |
Keys to the Kingdom of Chemical Engineering (uakron.edu, 11min) Sometimes it helps to reduce a subject to its simplest key elements in order to "see the forest instead of the trees." In this presentation, the entire subject of Chemical Engineering is reduced to three key elements: sizing a reactor (Uakron.edu, 7min), sizing a distillation column (uakron.edu, 9min), and sizing a heat exchanger (uakron.edu, 9min). In principle, these elements involve the independent subjects of kinetics, thermodynamics, and transport phenomena. In reality, each element involves thermodynamics to some extent. Distillation involves thermodynamics in the most obvious way because relative volatility and activity coefficients are rarely discussed in a kinetics or transport course. In kinetics, however, the rate of reaction depends on the partial pressures of the reactants and their nearness to the equilibrium concentrations, which are thermodynamical quantities. In heat exchangers, the heat transfer coefficient is important, but we also need to know the temperatures for the source and sink of the heat transfer; these temperatures are often dictated by thermodynamical constraints like the boiling temperature or boiler temperature required to run a Rankine cycle (cf. Chapter 5). In case you are wondering about the subject of " If you would like a little more practice with reactor mass balances and partial pressure, more screencasts are available from LearnChemE.com, MichiganTech, and popular chemistry websites. |

14.09 - Numerical procedures for binary, ternary LLE | Click here. | 100 | 1 |
LLE flash using Matlab/Chap14/LLEflash.m (5:54) (msu.edu) An overview of the LLE flash routine in Matlab, including an overview of the program logic and then an example of how to run the program. See also - Supplement on Iteration of LLE with Excel and Matlab. |

17.06 Determining the Spontaneity of Reactions | Click here. | 100 | 1 |
Which way will a reaction go? (3:40) (msu.edu) When both reactants and products are present in a reactng mixture, the direction the reaction will proceed is not necessarily indicated by the sign of ΔG Comprehension Questions: (Hint: review Example 17.1 before answering.) 1. CO and H2 are fed in a |

07.02 Corresponding States | Click here. | 100 | 1 |
Principles of Corresponding States (10:02) (msu.edu) Comprehension Questions: 1. What is the value of the reduced vapor pressure for Krypton at a reduced temperature of 0.7? How does this help us to characterize the vapor pressure curve? 2. Sketch the graph of vapor pressure vs. temperature as presented in this screencast for the compounds: Krypton and Ethanol. Be sure to label your axes completely and accurately. Draw a vertical line to indicate the condition that defines the acentric factor. |

08.02 - The Internal Energy Departure Function | Click here. | 100 | 1 |
Departure Function Derivation Principles (8:03) (msu.edu) |

13.04 - UNIQUAC | Click here. | 100 | 2 |
Volumes and Areas from Group Contributions (3:04) Group contributions are used widely in property prediction. The volumes and surface areas have been determined by x-ray data and high-temperature collision data. The UNIQUAC and UNIFAC activity coefficient methods use these quantities to calculation volume fractions and surface area fractions. The assignment of functional groups for a molecule must be done carefully to assure agreement with the groups used by the model developers. Comprehension Questions: 1. Estimate R and Q for 1,4 dihydroxy benzene. 2. Estimate R and Q for n-propyl alcohol and compare them to the values for IPA. 3. Estimate R and Q for methyl-npropyl ketone. |

17.05 - Effect of Pressure, Inerts, Feed Ratios | Click here. | 100 | 1 |
How to push, pull, persuade a reaction (3:32) (msu.edu) Pressure can be used to influence conversion for reactions where gas phase species are present. Feed ratios, inerts, or simultaneous reactions can also be used. Comprehension Questions: 1. The principle by which a change in temperature, pressure, or concentration leads to a counteracting change in equilibrium is known as:_____. |

17.05 - Effect of Pressure, Inerts, Feed Ratios | Click here. | 100 | 1 |
Partial pressures and reactor sizing are among the keys to chemical engineering calculations (uakron.edu, 7 min, review from Section 1.6). Partial pressures (uakron.edu, 7 min) also play an essential role in reaction equilibrium calculations. Partial pressure calculations basically involve straightforward mass balances, but specific vocabulary and a need for systematic precision can cause difficulty. The calculations involve six elements that must be carefully computed:
(1) Stoichiometry - the reaction equation must be stoichiometrically balanced such that the number of atoms of each element are the same on both sides of the equation. This balance is achieved by adjusting the stoichiometric coefficients. The change in the number of moles of each component must be in correct stoichiometric proportions relative to the "key component." Inert compounds (see below) are NOT included in the stoichiometric equation. For the example in this presentation, the objective of the reactor is to oxidize carbon monoxide (CO) in a catalytic converter by reacting it with oxygen (O2). So, CO + 0.5 O2 = CO2.
Comprehension Questions:
1. What is the value of the total pressure (bar) applied in the presentation of this example? |

03.3 - Introduction to Mixture Properties | Click here. | 100 | 1 |
Props.xlsx has a lot of data, but usually we are only interested in a few components at a time. Adding a few lines at the top and applying the VLookup function makes it easy to tabulate the properties you need. (8min, uakron.edu) Comprehension questions 1. Download the latest version of Props.xlsx from sourceforge. Add lines to support 8 components of interest and cells to compute Psat given T as input and Tsat given P as input by appropriately arranging Eqn. 2.47. Add a column for computing Hvap at Tsat for each component by Eqn. 2.45. 2. Insert a sheet(tab) called Hrxn in Props.xlsx. Types the names for components in the reaction CO+0.5O2=CO2. Use VLookup to tabulate the Hf values for each component. To the left of the name column, insert cells to represent the stoichiometric coefficients. Then calculate the heat of reaction by using the sumproduct() function applied to the stoichiometric coefficients and Hf values. Check your result with a hand calculation. 3. Download the latest versions of PREOS.xls and Props.xlsx from sourceforge. Update the Props tab appropriately. Then implement the VLookup function on the ThermoProps tab of PREOS so all you need to do is type the name of the compound of interest in order to update the ThermoProps sheet to all properties of interest. We discuss how to use PREOS.xls to solve problems in Unit II. |

08.08 - Reference States | Click here. | 100 | 1 |
This sample calculation shows how to compute the liquefaction in the Linde process for methane as the operating fluid. (uakron, 8min) The Linde process is a slight variation on the OVC cycle wherein the liquefied fraction exiting the throttle is captured as product and removed from the process. There is also heat integration in the sense that the cold vapor is used to precool the feed to the throttle. FYI: Since natural gas is mostly methane, this process could be easily adapted to the production of liquefied natural gas (LNG) or liquified petroleum gas (LPG, mostly propane). Liquefied gases may seem impractical when you first encounter them, but they are more efficient for transport because they are so much more dense than the gases. Keeping them as liquids is basically a reflection of the effectiveness of the insulation. If any gas leaks from the relief valve (~1.1 bar), then liquid must evaporate to fill the space. The requisite heat of vaporization in that case cools the remaining below the boiling temperature. No heat = no vaporization. |