Top-rated ScreenCasts

Text Section Link to original post Rating (out of 100) Number of votes Copy of rated post
10.01 - Introduction to Phase Diagrams Click here. 84 5

Bubble, Dew, Flash Concepts and the Lever Rule (4:01) (msu.edu)

Understanding what is present (known) and not present (unkown) for a given state of a system will help you decide which routine to use. Notation is introduced for liquids, vapor, and overall compositions. Also, the lever rule concept is used throughout the chemical engineering curriculum, but it is important to see how to use compositions for the lever rule.

Comprehension Questions:

1. Which variables are fixed and which do you need to find in each of the following:
a. Bubble temperature
b. Bubble pressure
c. Dew temperature
d. Dew pressure
e. Isothermal flash
f. Adiabatic flash

13.05 - UNIFAC Click here. 82.8571 7

Unifac.xls Calculation of Bubble Temperature. (3 min) (LearnChemE.com)
Comprehension Questions: Download Unifac.xls from the software link and use it to answer the following.
1. Estimate the activity coefficient of IPA in water at 80C and xw = 0.1.
2. Estimate the fugacity for IPA in water at 80C and xw =0.1.
3. Estimate the total pressure at 80C when xw =0.1.
4. Estimate the bubble temperature of IPA in water at 760mmHg and xw =0.1.

07.06 Solving The Cubic EOS for Z Click here. 82.8571 7

3. Using Preos.xlsx and Interpreting Output (11:38) (msu.edu)
This screencast includes discussion of what we mean by the casual terminology 'three root region' and 'one root region', and how to interpret screen output. Also, the screencast spends time dicussing selection of stable roots using fugacity.

Comprehension Questions:

1. Is it possible to have a 1-root region below the critical temperature?

2. Is it possible to have a 3-root region above the critical temperature?

3. How does fugacity help us to identify the proper root to select?

4. Would argon at 5 MPa be in the 1-root or 3-root region?

13.04 - UNIQUAC Click here. 80 4

UNIQUAC concepts (6:44) (msu.edu)

Concepts and assumptions used in developing the UNIQUAC activity coefficient method. This method introduced the use of surface area as an important quantity in calculation of activity coefficients.

15.04 - VLE calculations by an equation of state Click here. 80 1

PRMix.xlsx - Tutorial on use for bubble pressure (msu.edu) (10:06)

An overview of the organization of PRMix.xlsx, and a tutorial on the strategy to solve bubble pressure problems. Example 15.6 is worked in the screencast. After watching this screencast, you should be able to also solve dew or flash problems if you think about the strategy used to solve the problem. You may also be interested in a similar presentation from U.Colorado (learncheme, 6min).

10.10 - Mixture Properties for Ideal Solutions Click here. 80 1

10.9 - 10.12 Mixture Properties Overview (6:53) (msu.edu)

This section of the text is thick with lots of equations. It may help to filter out the most important equations and results so that you have the perspective of the overall objectives of this section. There are a lot of equations in this section to show that the component fugacity in an ideal solution is simply the mole fraction multiplied by the pure component fugacity. In a liquid mixture, this is approximated as the mole fraction times the vapor pressure! This screencast goes on to preview the most important results of the next section to help you see the overall story.

08.02 - The Internal Energy Departure Function Click here. 80 4

The Internal Energy Departure Function (11min, uakron.edu) Deriving departure functions for a variety of equations of state is simplified by transforming to dimensionless units and using density instead of volume. This also leads to an extra simplification for the internal energy departure function.

Comprehension Questions:

1. What is the value of T(∂P/∂T)V - P for an ideal gas?
2. What is the value of (∂U/∂V)T for an ideal gas and how can you explain this result at the molecular scale?
3. The Redlich-Kwong (RK) EOS is: P=RT/(V-b) -a/(V2RT1.5). Use Eqn. 8.13 to solve for (U-Uig)/RT of the RK EOS.
4. The RK EOS can be written as: Z = 1/(1-) - /(RT1.5). Use Eqn. 8.14 to solve for (U-Uig)/RT of the RK EOS.

07.05 Cubic Equations of State Click here. 80 1

Intro to the vdW EOS. (LearnCheme.com, 5min) Provides a brief overview of the van der Waals (vdW) 1873 equation of state (EOS), which served as a prototype for EOS development for over 100 years. Note: the vdW EOS is just one conjecture of how equations of state for real fluids may be formulated. In reality, each fluid has its own unique EOS. The vdW model conjectures that the pressure is altered relative to the ideal gas by the presence of attractive forces and repulsive forces.

Comprehension Questions:

1. Of the two parameters a and b, which is related to attractive forces and which is related to attractive forces?
2. How are the parameters a and b typically characterized/computed? ie. To what experimental constants are they related in order to compute them?
3. Is the vdW EOS an example of a 2-parameter EOS or 3-parameter EOS?
4. When writing the term (V-b) we subtract b because the molecules occupy volume and when V=b, all the "free volume" is gone. Can you explain the term (P+a/V2) in a similar manner?
5. In the presented example of CO2 at 0.2L and 269K, how does the pressure compare when computed by the ideal gas law vs. the vdW model? (Give both values.)
6. In the presented example of CO2 at 0.0L and 269K, how does the pressure compare when computed by the ideal gas law vs. the vdW model? (Give both values.)

08.05 - Summary of Density Dependent Formulas Click here. 80 1

Enthalpy Departure Function for the vdW Fluid (5min) (LearnChemE.com) This short video shows the application of Eqn. 8.24 and the van der Waals equation of state. This is a simple equation of state and the derivation is easy, so it is a good place to start in order to understand the process.

18.09 - Sillen Diagram Solution Method Click here. 80 1

 Sillen Diagram for Electrolyte Calculations (10:14) (msu.edu)

Construction of a Sillien diagram involves several steps that are hard to follow from a textbook. This screencast goes through the steps of solving Example 18.5 from the Elliott and Lira textbook using the Sillen diagram. The problem asks for the pH of a solution that is 0.01 M NaOAc.

Pages