# Top-rated ScreenCasts

Text Section | Link to original post | Rating (out of 100) | Number of votes | Copy of rated post |
---|---|---|---|---|

12.03 - Scatchard-Hildebrand Theory | Click here. | 85 | 4 |
This video walks you through the process of transforming the M1/MAB model into the Scatchard-Hildebrand model using Excel (6min, uakron.edu) It steps systematically through the modifications to the spreadsheet to obtain each new model. You should implement the M1/MAB model before implementing this procedure. Comprehension Questions: |

10.01 - Introduction to Phase Diagrams | Click here. | 84 | 5 |
Bubble, Dew, Flash Concepts and the Lever Rule (4:01) (msu.edu) Understanding what is present (known) and not present (unkown) for a given state of a system will help you decide which routine to use. Notation is introduced for liquids, vapor, and overall compositions. Also, the lever rule concept is used throughout the chemical engineering curriculum, but it is important to see how to use compositions for the lever rule. Comprehension Questions: 1. Which variables are fixed and which do you need to find in each of the following: |

13.05 - UNIFAC | Click here. | 84 | 5 |
UNIFAC concepts (8:17) (msu.edu) UNIFAC is an extension of the UNIQUAC method where the residual contribution is predicted based on group contributions using energy parameters regressed from a large data set of mixtures. This screecast introduces the concepts used in model development. You may want to review group contribution methods before watching this presentation. Comprehension Questions: 1. What is the difference between the upper case Θ of UNIFAC and the lower cast 2. Suppose you had a mixture that was exactly the same proportions as the lower right "bubble" in slide 2. Compute Θ 3. Compare your value computed in 2 to the value given by unifac.xls. |

01.2 Molecular Nature of Temperature, Pressure, and Energy | Click here. | 84 | 10 |
Intermolecular Potential Energy (msu.edu) (7:11) The intermolecular potential energy is distinct from the gravitational potential energy of the center of mass. Further, understanding of the potential energy relation with intermolecular force is important. Comprehension Questions: 1. Molecules A and B can be represented by the square-well potential. For molecule A, σ = 0.2 nm and ε = 30e-22 J. For molecule B, σ = 0.35 nm and ε = 20e-22 J. Sketch the potential models for the two molecules on the same pair of axes clearly indicating σ's and ε's of each species. Start your x-axis at zero and scale your drawing properly. Make molecule A a solid line and B a dashed line. Which molecule would you expect to have the higher boiling temperature? (Hint: check out Figure 1.2.) 2. The potential, u(r), represents the work of bringing two molecules together from infinite distance to distance r. So, what is the force law between two molecules according to the Lennard-Jones potential model? Hint: W=∫F*dx 3. Sketch the potential and the force between two molecules vs. dimensionless distance, r/σ, according to the Lennard-Jones potential. Considering the value of r/σ when the force is equal to zero, is it greater, equal, or less than unity? |

13.05 - UNIFAC | Click here. | 82.8571 | 7 |
Unifac.xls Calculation of Bubble Temperature. (3 min) (LearnChemE.com) |

07.06 Solving The Cubic EOS for Z | Click here. | 82.8571 | 7 |
3. Using Preos.xlsx and Interpreting Output (11:38) (msu.edu) Comprehension Questions: 1. Is it possible to have a 1-root region below the critical temperature? 2. Is it possible to have a 3-root region above the critical temperature? 3. How does fugacity help us to identify the proper root to select? 4. Would argon at 5 MPa be in the 1-root or 3-root region? |

10.10 - Mixture Properties for Ideal Solutions | Click here. | 80 | 1 |
10.9 - 10.12 Mixture Properties Overview (6:53) (msu.edu) This section of the text is thick with lots of equations. It may help to filter out the most important equations and results so that you have the perspective of the overall objectives of this section. There are a lot of equations in this section to show that the component fugacity in an ideal solution is simply the mole fraction multiplied by the pure component fugacity. In a liquid mixture, this is approximated as the mole fraction times the vapor pressure! This screencast goes on to preview the most important results of the next section to help you see the overall story. |

13.03 - NTRL | Click here. | 80 | 1 |
NRTL concepts (2:30) (msu.edu) The concepts on the development of the NRTL activity coefficient model. Comprehension Questions: 1. What value does the NRTL model assume for the coordination number (z)? |

15.04 - VLE calculations by an equation of state | Click here. | 80 | 1 |
PRMix.xlsx - Tutorial on use for bubble pressure (msu.edu) (10:06) An overview of the organization of PRMix.xlsx, and a tutorial on the strategy to solve bubble pressure problems. Example 15.6 is worked in the screencast. After watching this screencast, you should be able to also solve dew or flash problems if you think about the strategy used to solve the problem. You may also be interested in a similar presentation from U.Colorado (learncheme, 6min). |

18.09 - Sillen Diagram Solution Method | Click here. | 80 | 1 |
Sillen Diagram for Electrolyte Calculations (10:14) (msu.edu) Construction of a Sillien diagram involves several steps that are hard to follow from a textbook. This screencast goes through the steps of solving Example 18.5 from the Elliott and Lira textbook using the Sillen diagram. The problem asks for the pH of a solution that is 0.01 M NaOAc. |