# Top-rated ScreenCasts

Text Section | Link to original post | Rating (out of 100) | Number of votes | Copy of rated post |
---|---|---|---|---|

13.05 - UNIFAC | Click here. | 82.8571 | 7 |
Unifac.xls Calculation of Bubble Temperature. (3 min) (LearnChemE.com) |

10.10 - Mixture Properties for Ideal Solutions | Click here. | 80 | 1 |
10.9 - 10.12 Mixture Properties Overview (6:53) (msu.edu) This section of the text is thick with lots of equations. It may help to filter out the most important equations and results so that you have the perspective of the overall objectives of this section. There are a lot of equations in this section to show that the component fugacity in an ideal solution is simply the mole fraction multiplied by the pure component fugacity. In a liquid mixture, this is approximated as the mole fraction times the vapor pressure! This screencast goes on to preview the most important results of the next section to help you see the overall story. |

07.05 Cubic Equations of State | Click here. | 80 | 1 |
Intro to the vdW EOS. (LearnCheme.com, 5min) Provides a brief overview of the van der Waals (vdW) 1873 equation of state (EOS), which served as a prototype for EOS development for over 100 years. Note: the vdW EOS is just one conjecture of how equations of state for real fluids may be formulated. In reality, each fluid has its own unique EOS. The vdW model conjectures that the pressure is altered relative to the ideal gas by the presence of attractive forces and repulsive forces. Comprehension Questions: 1. Of the two parameters |

08.05 - Summary of Density Dependent Formulas | Click here. | 80 | 1 |
Enthalpy Departure Function for the vdW Fluid (5min) (LearnChemE.com) This short video shows the application of Eqn. 8.24 and the van der Waals equation of state. This is a simple equation of state and the derivation is easy, so it is a good place to start in order to understand the process. |

18.09 - Sillen Diagram Solution Method | Click here. | 80 | 1 |
Sillen Diagram for Electrolyte Calculations (10:14) (msu.edu)
Construction of a Sillien diagram involves several steps that are hard to follow from a textbook. This screencast goes through the steps of solving Example 18.5 from the Elliott and Lira textbook using the Sillen diagram. The problem asks for the pH of a solution that is 0.01 M NaOAc. |

13.03 - NTRL | Click here. | 80 | 1 |
NRTL concepts (2:30) (msu.edu) The concepts on the development of the NRTL activity coefficient model. Comprehension Questions: 1. What value does the NRTL model assume for the coordination number (z)? |

11.13 - Osmotic Pressure | Click here. | 80 | 3 |
MW of protein by osmotic pressure - (8:23) (learncheme.com) An application of osmotic pressure measurement to determine MW of a protein. |

09.05 - Fugacity and Fugacity Coefficient | Click here. | 80 | 2 |
What is fugacity? (10min) (learncheme.com) Defines fugacity in terms of Gibbs Energy and describes the need for defining this new property as a generalization of how pressure affects ideal gases. |

13.04 - UNIQUAC | Click here. | 80 | 4 |
UNIQUAC concepts (6:44) (msu.edu) Concepts and assumptions used in developing the UNIQUAC activity coefficient method. This method introduced the use of surface area as an important quantity in calculation of activity coefficients. |

09.05 - Fugacity and Fugacity Coefficient | Click here. | 80 | 2 |
In a contest for "the most hated word in Chemical Engineering," Comprehension Questions: 1.What is the fugacity of a vapor phase component in a mixture according to Raoult's law? |