Top-rated ScreenCasts
Text Section | Link to original post | Rating (out of 100) | Number of votes | Copy of rated post |
---|---|---|---|---|
04.09 Turbine calculations | Click here. | 60 | 6 |
General procedure to solve for steam turbine efficiency. (LearnChemE.com, 5min) This video outlines the procedure without actually solving any specific problem. It shows how inefficiency affects the T-S diagram and how to compute the actual temperature at the turbine outlet. |
14.04 LLE Using Activities | Click here. | 60 | 2 |
Txy Phase Diagram Showing LLE and VLE Simultaneously (9min,uakron.edu) The binary Txy phase diagram of methanol+benzene is visualized with sample calculations of the SSCED model with several values of the nonideality (kij) parameter. The calculations show the liquid-liquid equilibrium (LLE) phase boundary as well as the vapor-liquid equilibrium (VLE) boundary. As the estimated nonideality (kij) increases, the LLE boundary crashes into the VLE. It is so exciting that it makes a thermo nerd wax poetic about the "valley of Gibbs." Comprehension Questions: 1. The LLE phase boundary moves up as the nonideality increases. Which way does the VLE contribution move? Explain how this relates to the molecules' escaping tendencies. |
10.03 - Binary VLE using Raoult's Law | Click here. | 60 | 4 |
Raoult's Law Calculation Procedures (11:45) (msu.edu) Comprehension Questions: Assume the ideal solution SCVP model (Eqns. 2.47 and 10.8). 1. Estimate the bubble pressure (bars) of 30% acetone + 70% benzene at 333K. |
08.07 - Implementation of Departure Functions | Click here. | 60 | 2 |
Helmholtz Departure - PR EOS (uakron.edu, 11min) This lesson focuses first and foremost on deriving the Helmholtz departure function. It illustrates the application of integral tables from Apx. B and the importance of applying the limits of integration. It is the essential starting point for deriving properties involving entropy (S,A,G) of the PREOS, and it is a convenient starting point for deriving energetic properties (U,H). |
05.4 - Refrigeration | Click here. | 60 | 5 |
Refrigeration Cycle Introduction (LearnChemE.com, 3min) explains each step in an ordinary vapor compression (OVC) refrigeration cycle and the energy balance for the step. You might also enjoy the more classical introduction (USAF, 11min) representing your tax dollars at work. The musical introduction is quite impressive and several common misconceptions are addressed near the end of the video. |
03.1 - Heat Engines and Heat Pumps: The Carnot Cycle | Click here. | 60 | 2 |
Heat Engine Introduction (LearnChemE.com, 6min) introduction to Carnot heat engine and Rankine cycle. The Carnot cycle is an idealized conceptual process in the sense that it provides the maximum possible fractional conversion of heat into work (aka. thermal efficiency, ηθ). But it is impractical for several reasons as discussed in the video. When operating on steam as the working fluid, as is common in nuclear power plants, coal fired power plants, and concentrated solar power plants, the Rankine cycle is much more practical, as explained here. This LearnChemE video is short and sweet, but it applies the property of entropy, which is not introduced until Chapter 4. All you need to know about entropy at this stage is that the change in entropy is zero for an adiabatic and reversible process and the change in entropy is greater than zero when you add heat or cause irreversibility. Since entropy is a state function, we can use the steam tables to facilitate accounting for inefficiencies. Entropy becomes essential when using steam as the working fluid because working out ∫PdV of steam is much more difficult than for an ideal gas. We reiterate this video in Chapter 5, where we discuss calculations for several practical cyclic processes. Comprehension Questions: |
04.02 The Microscopic View of Entropy | Click here. | 60 | 7 |
Principles of Probability.This is supplemental Material from "Molecular Driving Forces, K.A. Dill, S. Bromberg", Garland Science, New York:NY, 2003, Chapter 1. See the next three screencasts. This content is useful for graduate level courses that go into more depth or for students interested in more background on probability. |
12.01 - The van der Waals Perspective for Mixtures | Click here. | 60 | 9 |
Mixing Rules (7:23) (msu.edu) How should energy depend on composition? Should it be linear or non-linear? What does the van der Waals approach tell us about composition dependence? This screencasts shows that the mixing rule for 'a' in a random mixture should be quadratic. A linear mixing rule is usually used for the van der Waals size parameter. |
13.01 - Local Composition Theory | Click here. | 60 | 13 |
Local Composition Concepts (6:51) (msu.edu) The local composition models of chapter 13 share common features covered in this screencasts. An understanding of these principles will make all the algebra in the models less daunting. Comprehension Questions: 1. In the picture of molecules given in the presentation on slide 2, what is the numerical value of the local composition x11? |
12.03 - Scatchard-Hildebrand Theory | Click here. | 60 | 16 |
Scatchard-Hildebrand Theory (6:53) (msu.edu) Have you ever heard 'Like dissolves like'? Here we see that numerically. The Scatchard-Hildebrand model builds on the van Laar equation by using pure component information. Scatchard and Hildebrand replaced the energy departure with the experimental energy of vaporization. Because this is related to the 'a' parameter in the van Laar theory, they developed a parameter called the 'solubility parameter', but based it on the energy of vaporization. Interestingly, the model reduces to the one parameter Margules equation when the molar volumes are the same. Comprehension Questions: 1. Based on the Scatchard-Hildebrand model, arrange the following mixtures from most compatible to least compatible. (a) Pentane+hexane, (b) decane+decalin, (c) 1-hexene+dodecanol, (d) pyridine+methanol, _____ ______ ______ ______ |