Top-rated ScreenCasts

Text Section Link to original post Rating (out of 100) Number of votes Copy of rated post
04.02 The Microscopic View of Entropy Click here. 53.3333 3

Relating the microscopic perspective on entropy to macroscopic changes in volume (uakron.edu, 11min) Through the introduction of Stirling's approximation, we arrive at a remarkably simple conclusion for changes in entropy relative to the configurations of ideal gas molecules at constant temperature: ΔS = Rln(V2/V1). This makes it easy to compute changes in entropy for ideal gases, even for subtle changes like mixing.

Comprehension Questions:

1. Estimate ln(255!).

2. A system goes from 6 particles in Box A and 4 particles in Box B to 5 particles in each. Estimate the change in S(J/K).

3. A system goes from 6 moles in Box A and 4 moles in Box B to 5 moles in each. Estimate the change in S(J/mol-K).

11.02 - Calculations with Activity Coefficients Click here. 53.3333 3

Bubble Pressure (5:25) (msu.edu)

The culmination of the activity coefficient method is application of the fitted activity coefficients to extrapolate from limited experiments in a Stage III calculation. As the easiest routine to apply, the bubble pressure method should be studied first. The recommended order of study is 1) Bubble Pressure; 2) Bubble Temperature; 3) Dew Pressure; 4) Dew Temperature. Note that an entire Pxy diagram can be generated with bubble pressure calculations; no dew calculations are required.

01.2 Molecular Nature of Temperature, Pressure, and Energy Click here. 52.2222 18

Molecular Nature of Internal Energy: Configurational Energy. (uakron.edu, 19min) Making the connection between "u" and "U" requires the concept configuring the molecules such that their potentials overlap. Then it is a simple matter (conceptually) to count the number of overlaps that occur and multiply by the energy of the overlap to get the "configurational energy." Adding the configurational energy to the translational (and vibrational) energy (Uig, discussed above), gives the total "U."

Comprehension Questions:

For 1-4, assume 100 molecules are held in a cylinder with solid walls. A piston in the cylinder can move to adjust the density.
1. Suppose the range of the potential (λ) was increased. Would the configurational energy increase, decrease, or stay the same?
2. Suppose the density was decreased. Would the configurational energy increase, decrease, or stay the same?
3. Suppose the temperature was increased at constant density. Would the configurational energy increase, decrease, or stay the same?
4. Suppose the temperature was increased at constant density. Would the configurational energy characterized by (U-Uig)/RT  increase, decrease, or stay the same?
5. Molecules A and B can be represented by the square-well potential. For molecule A, σ = 0.2 nm and ε = 30e-22 J. For molecule B, σ = 0.35 nm and ε = 20e-22 J.  Sketch the potential models for the two molecules on the same pair of axes clearly indicating σ's and ε's of each species. Start your x-axis at zero and scale your drawing properly.  Make molecule A a solid line and B a dashed line. Which molecule would you expect to have the higher boiling temperature? (Hint: check out Figure 1.2.)
6. Sketch the potential and the force between two molecules vs. dimensionless distance, r/σ, according to the Lennard-Jones potential. Considering the value of r/σ when the force is equal to zero, is it greater, equal, or less than unity?

02.01 Expansion/Contraction Work Click here. 52 5

Vocabulary in Sections 2.1-2.3: Forms of "Work." (uakron.edu, 11 min) Making cookies is hard work. In discussing work, we develop several shorthand terms to refer to specific common situations: expansion-contraction work, shaft work, flow work, stirring work, "lost" work. These terms comprise the headings of sections 2.1-2.3, but it is convenient to discuss them all at once. The important thing to remember is that work is really just force times distance, pure and simple. The shorthand terms are not intended to complicate the discussion, but to expedite the analysis of the energy balance. Developing some familiarity with the terms related to common daily experiences may help you to assimilate this new vocabulary. Sample calculations (13min) illustrate a remarkable difference when one is faced with gas compression vs. liquid pump work. 

Comprehension Questions:
1. How is "expansion-contraction" work related to force times distance?
2. What is the expression for "flow" work? Explain how it relates to force times distance for fluid flowing in a pipe.
3. What expression can we use for calculating "shaft" work, as in a pump or turbine? What is the technique of calculus to which it is related?

04.02 The Microscopic View of Entropy Click here. 52 10

Principles of Probability.

This is supplemental Material from "Molecular Driving Forces, K.A. Dill, S. Bromberg", Garland Science, New York:NY, 2003, Chapter 1. See the next three screencasts. This content is useful for graduate level courses that go into more depth or for students interested in more background on probability.

Download Handout Notes to Accompany Screencasts (msu.edu)

13.01 - Local Composition Theory Click here. 51.7647 17

Local Composition Concepts (6:51) (msu.edu)

The local composition models of chapter 13 share common features covered in this screencasts. An understanding of these principles will make all the algebra in the models less daunting.

Comprehension Questions:

1. In the picture of molecules given in the presentation on slide 2, what is the numerical value of the local composition x11?
2. In the same picture, what is overall composition x1?
3. What value of Ω21 can you infer from 1 and 2 above and the equations on slide 3?

11.13 - Osmotic Pressure Click here. 51.25 16

Osmotic Pressure (7:23) (Learncheme.com)

A derivation of the relation for osmotic pressure, and an explanation of why the pressures are different on each side of the semi-permeable membrane.

08.02 - The Internal Energy Departure Function Click here. 51.1111 9

The Internal Energy Departure Function (11min, uakron.edu) Deriving departure functions for a variety of equations of state is simplified by transforming to dimensionless units and using density instead of volume. This also leads to an extra simplification for the internal energy departure function.

Comprehension Questions:

1. What is the value of T(∂P/∂T)V - P for an ideal gas?
2. What is the value of (∂U/∂V)T for an ideal gas and how can you explain this result at the molecular scale?
3. The Redlich-Kwong (RK) EOS is: P=RT/(V-b) -a/(V2RT1.5). Use Eqn. 8.13 to solve for (U-Uig)/RT of the RK EOS.
4. The RK EOS can be written as: Z = 1/(1-) - /(RT1.5). Use Eqn. 8.14 to solve for (U-Uig)/RT of the RK EOS.

01.6 Summary Click here. 50 10

The objectives for Chapter 1 were:

1. Explain the definitions and relations between temperature, molecular kinetic energy,
molecular potential energy and macroscopic internal energy, including the role of intermolecular potential energy and how it is modeled. Explain why the ideal gas internal energy
depends only on temperature.
2. Explain the molecular origin of pressure.
3. Apply the vocabulary of thermodynamics with words such as the following: work, quality,
interpolation, sink/reservoir, absolute temperature, open/closed system, intensive/extensive
property, subcooled, saturated, superheated.
4. Explain the advantages and limitations of the ideal gas model.
5. Sketch and interpret paths on a P-Vdiagram.
6. Perform steam table computations like quality determination, double interpolation.

To these, we could add expressing and explaining the first and second laws. Make a quick list of these expressions and explanations in your own words, including cartoons or illustrations as you see fit,  starting with the first and second laws.

04.02 The Microscopic View of Entropy Click here. 50 2

Molecular Nature of S: Thermal Entropy (uakron.edu, 20min) We can explain configurational entropy by studying particles in boxes, but only at constant temperature. How does the entropy change if we change the temperature? Why should it change if we change the temperature? The key is to recognize that energy is quantized, as best exemplified in the Einstein Solid model. We learned in Chapter 1 that energy increases when temperature increases. If we have a constant number of particles confined to lattice locations, then the only way for the energy to increase is if some of the molecules are in higher energy states. These "higher energy states" correspond to faster (higher frequency) vibrations that stretch the bonds (Hookean springs) to larger amplitudes. We can count the number of molecules in each energy state similar to the way we counted the number of molecules in boxes. Then we supplement the formula for configurational entropy changes to arrive at the following simple relation for all changes in entropy for ideal gases: ΔS = Cv ln(T2/T1) + R ln(V2/V1). Note that we have related the entropy to changes in state variables. This observation has two significant implications: (1) entropy must also be a state function (2) we can characterize the entropy by specifying any two variables. For example, substituting V = RT/P into the above equation leads to: ΔS = Cp ln(T2/T1) - R ln(P2/P1).

Comprehension Questions:
1. Show the steps required to derive ΔS = Cp ln(T2/T1) - R ln(P2/P1) from ΔS = Cv ln(T2/T1) + R ln(V2/V1).
2. We derived a memorable equation for adiabatic, reversible, ideal gases in Chapter 2. Hopefully, you have memorized it by now! Apply this formula to compute the change in entropy for adiabatic, reversible, ideal gases as they go through any change in temperature and pressure.
3. Make a table enumerating all the possibilities for 3 oscillators with 4 units of energy. 
4. Compute the change in entropy (J/k) for 100 oscillators going from 3 units of energy to 50 units of energy.
5. Compute the change in entropy (J/K) for 100 particles going from 3 boxes to 50 boxes. (This is a review of configurational entropy.)

Pages