Top-rated ScreenCasts
Text Section | Link to original post | Rating (out of 100) | Number of votes | Copy of rated post |
---|---|---|---|---|
04.02 The Microscopic View of Entropy | Click here. | 53.3333 | 3 |
Relating the microscopic perspective on entropy to macroscopic changes in volume (uakron.edu, 11min) Through the introduction of Stirling's approximation, we arrive at a remarkably simple conclusion for changes in entropy relative to the configurations of ideal gas molecules at constant temperature: ΔS = Rln(V2/V1). This makes it easy to compute changes in entropy for ideal gases, even for subtle changes like mixing. Comprehension Questions: 1. Estimate ln(255!). 2. A system goes from 6 particles in Box A and 4 particles in Box B to 5 particles in each. Estimate the change in S(J/K). 3. A system goes from 6 moles in Box A and 4 moles in Box B to 5 moles in each. Estimate the change in S(J/mol-K). |
11.02 - Calculations with Activity Coefficients | Click here. | 53.3333 | 3 |
Bubble Pressure (5:25) (msu.edu) The culmination of the activity coefficient method is application of the fitted activity coefficients to extrapolate from limited experiments in a Stage III calculation. As the easiest routine to apply, the bubble pressure method should be studied first. The recommended order of study is 1) Bubble Pressure; 2) Bubble Temperature; 3) Dew Pressure; 4) Dew Temperature. Note that an entire Pxy diagram can be generated with bubble pressure calculations; no dew calculations are required. |
01.2 Molecular Nature of Temperature, Pressure, and Energy | Click here. | 52.2222 | 18 |
Molecular Nature of Internal Energy: Configurational Energy. (uakron.edu, 19min) Making the connection between "u" and "U" requires the concept configuring the molecules such that their potentials overlap. Then it is a simple matter (conceptually) to count the number of overlaps that occur and multiply by the energy of the overlap to get the "configurational energy." Adding the configurational energy to the translational (and vibrational) energy (Uig, discussed above), gives the total "U."
Comprehension Questions:
For 1-4, assume 100 molecules are held in a cylinder with solid walls. A piston in the cylinder can move to adjust the density. |
02.01 Expansion/Contraction Work | Click here. | 52 | 5 |
Vocabulary in Sections 2.1-2.3: Forms of "Work." (uakron.edu, 11 min) Making cookies is hard work. In discussing work, we develop several shorthand terms to refer to specific common situations: expansion-contraction work, shaft work, flow work, stirring work, "lost" work. These terms comprise the headings of sections 2.1-2.3, but it is convenient to discuss them all at once. The important thing to remember is that work is really just force times distance, pure and simple. The shorthand terms are not intended to complicate the discussion, but to expedite the analysis of the energy balance. Developing some familiarity with the terms related to common daily experiences may help you to assimilate this new vocabulary. Sample calculations (13min) illustrate a remarkable difference when one is faced with gas compression vs. liquid pump work. Comprehension Questions: |
04.02 The Microscopic View of Entropy | Click here. | 52 | 10 |
Principles of Probability.This is supplemental Material from "Molecular Driving Forces, K.A. Dill, S. Bromberg", Garland Science, New York:NY, 2003, Chapter 1. See the next three screencasts. This content is useful for graduate level courses that go into more depth or for students interested in more background on probability. |
13.01 - Local Composition Theory | Click here. | 51.7647 | 17 |
Local Composition Concepts (6:51) (msu.edu) The local composition models of chapter 13 share common features covered in this screencasts. An understanding of these principles will make all the algebra in the models less daunting. Comprehension Questions: 1. In the picture of molecules given in the presentation on slide 2, what is the numerical value of the local composition x11? |
11.13 - Osmotic Pressure | Click here. | 51.25 | 16 |
Osmotic Pressure (7:23) (Learncheme.com) A derivation of the relation for osmotic pressure, and an explanation of why the pressures are different on each side of the semi-permeable membrane. |
08.02 - The Internal Energy Departure Function | Click here. | 51.1111 | 9 |
The Internal Energy Departure Function (11min, uakron.edu) Deriving departure functions for a variety of equations of state is simplified by transforming to dimensionless units and using density instead of volume. This also leads to an extra simplification for the internal energy departure function. Comprehension Questions: 1. What is the value of T(∂P/∂T)V - P for an ideal gas? |
01.6 Summary | Click here. | 50 | 10 |
The objectives for Chapter 1 were: 1. Explain the definitions and relations between temperature, molecular kinetic energy, To these, we could add expressing and explaining the first and second laws. Make a quick list of these expressions and explanations in your own words, including cartoons or illustrations as you see fit, starting with the first and second laws. |
04.02 The Microscopic View of Entropy | Click here. | 50 | 2 |
Molecular Nature of S: Thermal Entropy (uakron.edu, 20min) We can explain configurational entropy by studying particles in boxes, but only at constant temperature. How does the entropy change if we change the temperature? Why should it change if we change the temperature? The key is to recognize that energy is quantized, as best exemplified in the Einstein Solid model. We learned in Chapter 1 that energy increases when temperature increases. If we have a constant number of particles confined to lattice locations, then the only way for the energy to increase is if some of the molecules are in higher energy states. These "higher energy states" correspond to faster (higher frequency) vibrations that stretch the bonds (Hookean springs) to larger amplitudes. We can count the number of molecules in each energy state similar to the way we counted the number of molecules in boxes. Then we supplement the formula for configurational entropy changes to arrive at the following simple relation for all changes in entropy for ideal gases: ΔS = Cv ln(T2/T1) + R ln(V2/V1). Note that we have related the entropy to changes in state variables. This observation has two significant implications: (1) entropy must also be a state function (2) we can characterize the entropy by specifying any two variables. For example, substituting V = RT/P into the above equation leads to: ΔS = Cp ln(T2/T1) - R ln(P2/P1). Comprehension Questions: |