Top-rated ScreenCasts

Text Section Link to original post Rating (out of 100) Number of votes Copy of rated post
04.02 The Microscopic View of Entropy Click here. 72 5

Principles of Probability III, Distributions, Normalizing, Distribution Functions, Moments, Variance. This screencast extends beyond material covered in the textbook, but may be helpful if you study statistical mechanics in another course. (msu.edu, 15min) (Flash)

12.01 - The van der Waals Perspective for Mixtures Click here. 72 5

Mixing Rules (7:23) (msu.edu)

How should energy depend on composition? Should it be linear or non-linear? What does the van der Waals approach tell us about composition dependence? This screencasts shows that the mixing rule for 'a' in a random mixture should be quadratic. A linear mixing rule is usually used for the van der Waals size parameter.

12.03 - Scatchard-Hildebrand Theory Click here. 72 5

This video walks you through the process of transforming the M1/MAB model into the Scatchard-Hildebrand model using Excel (6min, uakron.edu) It steps systematically through the modifications to the spreadsheet to obtain each new model. You should implement the M1/MAB model before implementing this procedure.

Comprehension Questions:
1. Modify the M1/MAB spreadsheet to obtain Pxy diagrams with the Scatchard-Hildebrand, M2, and van Laar models.
2. Add Txy capability to each of the models.
3. Search for experimental data on the system ethanol+toluene. Modify your spreadsheets to plot the experimental data (points) on the same plot with the predictions. Which model (MAB or ScHil) provides the most accurate predictions when compared to data? 

12.02 - The van Laar Model Click here. 70 6

The van Laar Equation (5:54) (msu.edu)

The van Laar equation uses the random mixing rules discussed in Section 12.1 with the internal energy to approximate the excess Gibbs Energy. What we learn is that it is possible to develop models using fundamental principles. Though this model is not used widely in process simulators, it provides a stepping stone to more advanced models.

06.1 The Fundamental Property Relation Click here. 70 2

From the physical world to the realm of mathematics (uakron.edu, 15min) In Unit I, students develop the skills to infer simplified energy and entropy balances for various physical situations. In order to facilitate that approach for applications involving chemicals other than steam and ideal gases, we need to transform that approach into a realm of pure mathematics. In this context it suffices to apply the energy and entropy balance of a very simple system (piston/cylinder) then focus on the state functions that are involved (U,H,S,...). The mathematical realm is relatively abstract, but it is ideally suited for the generalizations required to extend our principles from steam and ideal gases to any chemical.

Comprehension Questions:

1. In example 4.16, we noted that the estimated work to compress steam was less when treated with the steam tables than when treated as an ideal gas. Explain why while referring to the molecular perspective.

2. In Chapter 5, we noted that the temperature drops when dropping the pressure across a valve when treating steam or a refrigerant with thermodynamic tables, but the energy balance suggests that the temperature drop for an ideal gas should be zero. Explain how these two apparently contradictory observations can both be true while referring to the molecular perspective.

3. What is the relation of the state variable dU to the state variables S and V according to the fundamental property relation?

4. What is the relation of the state variable dH to the state variables S and P according to the fundamental property relation?

5. What is the significance of writing changes of state variables in terms of changes in other state variables?

6. Why is the compressibility factor (Z=PV/RT) less than one sometimes?

7. Is it possible for Z to be greater than one? Explain.

8. What is the significance of having a relation for P = P(V,T)? How will that help us to solve problems involving chemicals other than steam and ideal gases?

12.03 - Scatchard-Hildebrand Theory Click here. 68.8889 9

Scatchard-Hildebrand Theory (6:53) (msu.edu)

Have you ever heard 'Like dissolves like'? Here we see that numerically. The Scatchard-Hildebrand model builds on the van Laar equation by using pure component information. Scatchard and Hildebrand replaced the energy departure with the experimental energy of vaporization. Because this is related to the 'a' parameter in the van Laar theory, they developed a parameter called the 'solubility parameter', but based it on the energy of vaporization. Interestingly, the model reduces to the one parameter Margules equation when the molar volumes are the same.

Comprehension Questions:

1. Based on the Scatchard-Hildebrand  model, arrange the following mixtures from  most compatible to least compatible.  (a) Pentane+hexane,   (b) decane+decalin,  (c) 1-hexene+dodecanol,   (d) pyridine+methanol,
Most compatible                                                                     Least compatible

 _____                          ______                             ______                          ______

13.01 - Local Composition Theory Click here. 68 10

Local Composition Concepts (6:51) (msu.edu)

The local composition models of chapter 13 share common features covered in this screencasts. An understanding of these principles will make all the algebra in the models less daunting.

Comprehension Questions:

1. In the picture of molecules given in the presentation on slide 2, what is the numerical value of the local composition x11?
2. In the same picture, what is overall composition x1?
3. What value of Ω21 can you infer from 1 and 2 above and the equations on slide 3?

07.06 Solving The Cubic EOS for Z Click here. 68 5

5. Peng Robinson Using Solver for PVT and Vapor Pressure - Excel (4:42) (msu.edu)

Describes use of the Goal Seek and Solver tools for Peng-Robinson PVT properties and vapor pressure.

Comprehension Questions:

1. Which of the following represents the vapor pressure for argon at 100K?
(a) 3.000 bars (b) 4.000 bars (c) 3.26903 bars.

13.02 - Wilson's Equation Click here. 66.6667 6

Wilson's model concepts (2:44) (msu.edu)

The background on the assumptions and development of Wilson's activity coefficient model.

Comprehension Questions:

1. What value is assumed by Wilson's model for the coordination number (z)?
2. What are the values of Λ21 and Λ12 at infinite temperature, according to Wilson's equation?
3. Solve for x1+x2Λ12 in terms of volume fraction (Φ1) and mole fraction (x1) at infinite temperature.
4. What type of phase behavior is impossible to represent by Wilson's equation?

04.02 The Microscopic View of Entropy Click here. 65 4

Principles of Probability I, General Concepts, Correlated and Conditional Events. (msu.edu, 17min) (Flash)
Comprehension Questions:
1. Estimate the probability of pulling an king from a randomly shuffled deck of 52 cards.
2. A coin is flipped 5 times. Estimate the probability that heads is observed three of the 5 times.
3. A die (singular of dice) is a cube with the numbers 1-6 inscribed on its 6 faces. If you roll the die 7 times, what is the probability that 5 will be observed on all 7 rolls?

Pages