# Top-rated ScreenCasts

Text Section | Link to original post | Rating (out of 100) | Number of votes | Copy of rated post |
---|---|---|---|---|

11.13 - Osmotic Pressure | Click here. | 70 | 2 |
MW of protein by osmotic pressure - (8:23) (learncheme.com) An application of osmotic pressure measurement to determine MW of a protein. |

12.03 - Scatchard-Hildebrand Theory | Click here. | 68.5714 | 7 |
Scatchard-Hildebrand Theory (6:53) (msu.edu) Have you ever heard 'Like dissolves like'? Here we see that numerically. The Scatchard-Hildebrand model builds on the van Laar equation by using pure component information. Scatchard and Hildebrand replaced the energy departure with the experimental energy of vaporization. Because this is related to the 'a' parameter in the van Laar theory, they developed a parameter called the 'solubility parameter', but based it on the energy of vaporization. Interestingly, the model reduces to the one parameter Margules equation when the molar volumes are the same. Comprehension Questions: 1. Based on the Scatchard-Hildebrand model, arrange the following mixtures from most compatible to least compatible. (a) Pentane+hexane, (b) decane+decalin, (c) 1-hexene+dodecanol, (d) pyridine+methanol, _____ ______ ______ ______ |

08.01 - The Departure Function Pathway | Click here. | 68 | 5 |
Departure Function Overview (11:22) (msu.edu) |

10.04 - Multicomponent VLE & Raoult's Law Calculations | Click here. | 66.66670000000001 | 3 |
This example shows how to use VLookup with the xls Solver to facilitate multicomponent VLE calculations for ideal solutions: bubble, dew, and isothermal flash. (15min, uakron.edu) The product xls file serves as a starting point for multicomponent VLE calculations with activity models and for adiabatic flash and stream enthalpy calculations. This video shows Note: This is a companion file in a series. You may wish to choose your own order for viewing them. For example, you should implement the first three videos before implementing this one. Also, you might like to see how to quickly visualize the Txy analog of the Pxy phase diagram. If you see a phase diagram like the ones in section 11.8, you might want to learn about LLE phase diagrams. The links on the software tutorial present a summary of the techniques to be implemented throughout Unit3 in a quick access format that is more compact than what is presented elsewhere. Some students may find it helpful to refer to this compact list when they find themselves "not being able to find the forest because of all the trees." Comprehension Questions - Assume the reboiler composition for the column in Example 10.1 was zi={0.2,0.3,0.5} for n-butane, isopentane, and n-pentane, respectively. a) Calculate the temperature at which the boiler must operate in order to boil the bottoms product completely at 8 bars. |

13.02 - Wilson's Equation | Click here. | 66.66670000000001 | 6 |
Wilson's model concepts (2:44) (msu.edu) The background on the assumptions and development of Wilson's activity coefficient model. Comprehension Questions: 1. What value is assumed by Wilson's model for the coordination number ( |

04.02 The Microscopic View of Entropy | Click here. | 65 | 4 |
Principles of Probability I, General Concepts, Correlated and Conditional Events. (msu.edu, 17min) (Flash) |

04.02 The Microscopic View of Entropy | Click here. | 65 | 4 |
Principles of Probability II, Counting Events, Permutations and Combinations. This part discusses the binomial and multinomial coefficients for putting particles in boxes. The binomial and multinomial coefficient are used in section 4.2 to quantify configurational entropy. (msu.edu, 16min) (Flash) You might like to check out the sample calculations below before attempting the comprehension questions. |

12.02 - The van Laar Model | Click here. | 64 | 5 |
The van Laar Equation (5:54) (msu.edu) The van Laar equation uses the random mixing rules discussed in Section 12.1 with the internal energy to approximate the excess Gibbs Energy. What we learn is that it is possible to develop models using fundamental principles. Though this model is not used widely in process simulators, it provides a stepping stone to more advanced models. |

09.10 - Saturation Conditions from an Equation of State | Click here. | 60 | 1 |
We can combine the definition of fugacity in terms of the Gibbs Energy Departure Function with the procedure of visualizing an equation of state to visualize the fugacity as characterized by the PR EOS. (21min, uakron.edu) This amounts to plotting Z vs. density, similar to visualizing the vdW EOS. Then we simply type in the departure function formula. Since the PR EOS describes both vapors and liquids, we can calculate fugacity for both gases and liquids. Taking the reciprocal of the dimensionless density (
Concept Questions:
1. What equation can we use to estimate the fugacity of a compressed liquid relative to its saturation value? |

07.06 Solving The Cubic EOS for Z | Click here. | 60 | 4 |
5. Peng Robinson Using Solver for PVT and Vapor Pressure - Excel (4:42) (msu.edu) Describes use of the Goal Seek and Solver tools for Peng-Robinson PVT properties and vapor pressure. Comprehension Questions: 1. Which of the following represents the vapor pressure for argon at 100K? |