Top-rated ScreenCasts
Text Section | Link to original post | Rating (out of 100) | Number of votes | Copy of rated post |
---|---|---|---|---|
02.01 Expansion/Contraction Work | Click here. | 73.3333 | 3 |
Vocabulary in Sections 2.1-2.3: Forms of "Work." (uakron.edu, 11 min) Making cookies is hard work. In discussing work, we develop several shorthand terms to refer to specific common situations: expansion-contraction work, shaft work, flow work, stirring work, "lost" work. These terms comprise the headings of sections 2.1-2.3, but it is convenient to discuss them all at once. The important thing to remember is that work is really just force times distance, pure and simple. The shorthand terms are not intended to complicate the discussion, but to expedite the analysis of the energy balance. Developing some familiarity with the terms related to common daily experiences may help you to assimilate this new vocabulary. Sample calculations (13min) illustrate a remarkable difference when one is faced with gas compression vs. liquid pump work. Comprehension Questions: |
08.01 - The Departure Function Pathway | Click here. | 73.3333 | 6 |
Departure Function Overview (11:22) (msu.edu) |
10.03 - Binary VLE using Raoult's Law | Click here. | 73.3333 | 3 |
Raoult's Law Calculation Procedures (11:45) (msu.edu) Comprehension Questions: Assume the ideal solution SCVP model (Eqns. 2.47 and 10.8). 1. Estimate the bubble pressure (bars) of 30% acetone + 70% benzene at 333K. |
07.05 Cubic Equations of State | Click here. | 73.3333 | 3 |
Virial and Cubic EOS (11:18) (msu.edu) Comprehension Questions: 1. To what region of pressure is the virial EOS limited at a given temperature? Why? |
04.02 The Microscopic View of Entropy | Click here. | 72 | 5 |
Principles of Probability III, Distributions, Normalizing, Distribution Functions, Moments, Variance. This screencast extends beyond material covered in the textbook, but may be helpful if you study statistical mechanics in another course. (msu.edu, 15min) (Flash) |
12.03 - Scatchard-Hildebrand Theory | Click here. | 72 | 5 |
This video walks you through the process of transforming the M1/MAB model into the Scatchard-Hildebrand model using Excel (6min, uakron.edu) It steps systematically through the modifications to the spreadsheet to obtain each new model. You should implement the M1/MAB model before implementing this procedure. Comprehension Questions: |
12.02 - The van Laar Model | Click here. | 70 | 6 |
The van Laar Equation (5:54) (msu.edu) The van Laar equation uses the random mixing rules discussed in Section 12.1 with the internal energy to approximate the excess Gibbs Energy. What we learn is that it is possible to develop models using fundamental principles. Though this model is not used widely in process simulators, it provides a stepping stone to more advanced models. |
06.1 The Fundamental Property Relation | Click here. | 70 | 2 |
From the physical world to the realm of mathematics (uakron.edu, 15min) In Unit I, students develop the skills to infer simplified energy and entropy balances for various physical situations. In order to facilitate that approach for applications involving chemicals other than steam and ideal gases, we need to transform that approach into a realm of pure mathematics. In this context it suffices to apply the energy and entropy balance of a very simple system (piston/cylinder) then focus on the state functions that are involved (U,H,S,...). The mathematical realm is relatively abstract, but it is ideally suited for the generalizations required to extend our principles from steam and ideal gases to any chemical. Comprehension Questions: 1. In example 4.16, we noted that the estimated work to compress steam was less when treated with the steam tables than when treated as an ideal gas. Explain why while referring to the molecular perspective. 2. In Chapter 5, we noted that the temperature drops when dropping the pressure across a valve when treating steam or a refrigerant with thermodynamic tables, but the energy balance suggests that the temperature drop for an ideal gas should be zero. Explain how these two apparently contradictory observations can both be true while referring to the molecular perspective. 3. What is the relation of the state variable dU to the state variables S and V according to the fundamental property relation? 4. What is the relation of the state variable dH to the state variables S and P according to the fundamental property relation? 5. What is the significance of writing changes of state variables in terms of changes in other state variables? 6. Why is the compressibility factor (Z=PV/RT) less than one sometimes? 7. Is it possible for Z to be greater than one? Explain. 8. What is the significance of having a relation for P = P(V,T)? How will that help us to solve problems involving chemicals other than steam and ideal gases? |
13.01 - Local Composition Theory | Click here. | 68 | 10 |
Local Composition Concepts (6:51) (msu.edu) The local composition models of chapter 13 share common features covered in this screencasts. An understanding of these principles will make all the algebra in the models less daunting. Comprehension Questions: 1. In the picture of molecules given in the presentation on slide 2, what is the numerical value of the local composition x11? |
07.06 Solving The Cubic EOS for Z | Click here. | 68 | 5 |
5. Peng Robinson Using Solver for PVT and Vapor Pressure - Excel (4:42) (msu.edu) Describes use of the Goal Seek and Solver tools for Peng-Robinson PVT properties and vapor pressure. Comprehension Questions: 1. Which of the following represents the vapor pressure for argon at 100K? |