# Top-rated ScreenCasts

Text Section | Link to original post | Rating (out of 100) | Number of votes | Copy of rated post |
---|---|---|---|---|

13.01 - Local Composition Theory | Click here. | 68 | 10 |
Local Composition Concepts (6:51) (msu.edu) The local composition models of chapter 13 share common features covered in this screencasts. An understanding of these principles will make all the algebra in the models less daunting. Comprehension Questions: 1. In the picture of molecules given in the presentation on slide 2, what is the numerical value of the local composition |

07.06 Solving The Cubic EOS for Z | Click here. | 68 | 5 |
5. Peng Robinson Using Solver for PVT and Vapor Pressure - Excel (4:42) (msu.edu) Describes use of the Goal Seek and Solver tools for Peng-Robinson PVT properties and vapor pressure. Comprehension Questions: 1. Which of the following represents the vapor pressure for argon at 100K? |

13.02 - Wilson's Equation | Click here. | 66.6667 | 6 |
Wilson's model concepts (2:44) (msu.edu) The background on the assumptions and development of Wilson's activity coefficient model. Comprehension Questions: 1. What value is assumed by Wilson's model for the coordination number ( |

04.02 The Microscopic View of Entropy | Click here. | 65 | 4 |
Principles of Probability I, General Concepts, Correlated and Conditional Events. (msu.edu, 17min) (Flash) |

04.02 The Microscopic View of Entropy | Click here. | 65 | 4 |
Principles of Probability II, Counting Events, Permutations and Combinations. This part discusses the binomial and multinomial coefficients for putting particles in boxes. The binomial and multinomial coefficient are used in section 4.2 to quantify configurational entropy. (msu.edu, 16min) (Flash) You might like to check out the sample calculations below before attempting the comprehension questions. |

11.02 - Calculations with Activity Coefficients | Click here. | 65 | 4 |
This example shows how to incorporate activity calculations into Excel for solutions that follow the Margules 1-parameter (M1) model.(9min, uakron.edu) You should be able to adapt this procedure along with the procedure for the multicomponent ideal solutions to create a multicomponent M1 model. If you are having trouble, the video for the multicomponent SSCED model illustrates a very similar procedure. You can check your answers by putting in the same component twice. For example, instead of an equimolar binary mixture, input a quaternary mixture with 0.25 moles of methanol, 0.25 methanol (ie. type it as if it was another component), 0.25 of benzene and 0.25 of benzene. If you don't get the same results as for the binary equimolar system, check your calculations.Note: This is a companion file in a series. You may wish to choose your own order for viewing them. For example, you should implement the first three videos before implementing this one. Also, you might like to see how to quickly visualize the Txy analog of the Pxy phase diagram. If you see a phase diagram like the ones in section 11.8, you might want to learn about LLE phase diagrams. The links on the software tutorial present a summary of the techniques to be implemented throughout Unit3 in a quick access format that is more compact than what is presented elsewhere. Some students may find it helpful to refer to this compact list when they find themselves "not being able to find the forest because of all the trees." Comprehension Questions: Assume the SCVP model (Eq. 2.47). |

11.13 - Osmotic Pressure | Click here. | 64 | 10 |
Osmotic Pressure (7:23) (Learncheme.com) A derivation of the relation for osmotic pressure, and an explanation of why the pressures are different on each side of the semi-permeable membrane. |

11.12 - Lewis-Randall Rule and Henry's Law | Click here. | 63.3333 | 12 |
Introduction to Henry's Law (10:16) (msu.edu) Fugacities are calculated relative to standard state values, and the relations developed earlier in the chapter use a pure fluid standard state. What if the pure fluid does not exist as a liquid when pure? One choice is to use Henry's law. |

11.06 - Redlich-Kister and the Two-parameter Margules Models | Click here. | 62.8571 | 7 |
Two-parameter Margules Equation (5:05) (msu.edu) An overview of the two parameter Margules equation and how it is fitted to a single experiment. |

05.5 Liquefaction | Click here. | 60 | 2 |
Joule-Thomson Expansion (LearnChemE.com, 7min) describes the Joule-Thomson coefficient - ( Comphrehension Questions: 1. Referring to the table for R134a in Appendix E-12, compute the fraction liquid at 252K after throttling from a saturated liquid at 300K. 2. Referring to the table for R134a in Appendix E-12, compute the fraction liquid at 252K after expanding a saturated liquid at 300K through a reversible turbine. |