Top-rated ScreenCasts
Text Section | Link to original post | Rating (out of 100) | Number of votes | Copy of rated post |
---|---|---|---|---|
13.01 - Local Composition Theory | Click here. | 68 | 10 |
Local Composition Concepts (6:51) (msu.edu) The local composition models of chapter 13 share common features covered in this screencasts. An understanding of these principles will make all the algebra in the models less daunting. Comprehension Questions: 1. In the picture of molecules given in the presentation on slide 2, what is the numerical value of the local composition x11? |
13.02 - Wilson's Equation | Click here. | 66.6667 | 6 |
Wilson's model concepts (2:44) (msu.edu) The background on the assumptions and development of Wilson's activity coefficient model. Comprehension Questions: 1. What value is assumed by Wilson's model for the coordination number (z)? |
11.02 - Calculations with Activity Coefficients | Click here. | 65 | 4 |
This example shows how to incorporate activity calculations into Excel for solutions that follow the Margules 1-parameter (M1) model.(9min, uakron.edu) You should be able to adapt this procedure along with the procedure for the multicomponent ideal solutions to create a multicomponent M1 model. If you are having trouble, the video for the multicomponent SSCED model illustrates a very similar procedure. You can check your answers by putting in the same component twice. For example, instead of an equimolar binary mixture, input a quaternary mixture with 0.25 moles of methanol, 0.25 methanol (ie. type it as if it was another component), 0.25 of benzene and 0.25 of benzene. If you don't get the same results as for the binary equimolar system, check your calculations.Note: This is a companion file in a series. You may wish to choose your own order for viewing them. For example, you should implement the first three videos before implementing this one. Also, you might like to see how to quickly visualize the Txy analog of the Pxy phase diagram. If you see a phase diagram like the ones in section 11.8, you might want to learn about LLE phase diagrams. The links on the software tutorial present a summary of the techniques to be implemented throughout Unit3 in a quick access format that is more compact than what is presented elsewhere. Some students may find it helpful to refer to this compact list when they find themselves "not being able to find the forest because of all the trees." Comprehension Questions: Assume the SCVP model (Eq. 2.47). |
04.02 The Microscopic View of Entropy | Click here. | 65 | 4 |
Principles of Probability I, General Concepts, Correlated and Conditional Events. (msu.edu, 17min) (Flash) |
04.02 The Microscopic View of Entropy | Click here. | 65 | 4 |
Principles of Probability II, Counting Events, Permutations and Combinations. This part discusses the binomial and multinomial coefficients for putting particles in boxes. The binomial and multinomial coefficient are used in section 4.2 to quantify configurational entropy. (msu.edu, 16min) (Flash) You might like to check out the sample calculations below before attempting the comprehension questions. |
08.07 - Implementation of Departure Functions | Click here. | 60 | 2 |
Helmholtz Departure - PR EOS (uakron.edu, 11min) This lesson focuses first and foremost on deriving the Helmholtz departure function. It illustrates the application of integral tables from Apx. B and the importance of applying the limits of integration. It is the essential starting point for deriving properties involving entropy (S,A,G) of the PREOS, and it is a convenient starting point for deriving energetic properties (U,H). |
03.1 - Heat Engines and Heat Pumps: The Carnot Cycle | Click here. | 60 | 2 |
Heat Engine Introduction (LearnChemE.com, 6min) introduction to Carnot heat engine and Rankine cycle. The Carnot cycle is an idealized conceptual process in the sense that it provides the maximum possible fractional conversion of heat into work (aka. thermal efficiency, ηθ). But it is impractical for several reasons as discussed in the video. When operating on steam as the working fluid, as is common in nuclear power plants, coal fired power plants, and concentrated solar power plants, the Rankine cycle is much more practical, as explained here. This LearnChemE video is short and sweet, but it applies the property of entropy, which is not introduced until Chapter 4. All you need to know about entropy at this stage is that the change in entropy is zero for an adiabatic and reversible process and the change in entropy is greater than zero when you add heat or cause irreversibility. Since entropy is a state function, we can use the steam tables to facilitate accounting for inefficiencies. Entropy becomes essential when using steam as the working fluid because working out ∫PdV of steam is much more difficult than for an ideal gas. We reiterate this video in Chapter 5, where we discuss calculations for several practical cyclic processes. Comprehension Questions: |
05.5 Liquefaction | Click here. | 60 | 2 |
Joule-Thomson Expansion (LearnChemE.com, 7min) describes the Joule-Thomson coefficient - (dT/dP)H. For non-ideal fluids (including liquids), the temperature usually drops as the pressure drops. From a molecular perspective, it requires energy to rip molecules apart when they are in their attractive wells, and this energy must be taken from the thermal energy of the molecules themselves if the system is adiabatic. This video refers to the PREOS.xls spreadsheet to be used more in Unit II, but you can get the idea of how the Joule-Thomson expansion provides a basis for any liquefaction of any chemical, including the liquefaction that occurs in refrigeration and the one that occurs in a process designed to simply recover liquid product (e.g. liquefied natural gas (LNG), aka. methane). Comphrehension Questions: 1. Referring to the table for R134a in Appendix E-12, compute the fraction liquid at 252K after throttling from a saturated liquid at 300K. 2. Referring to the table for R134a in Appendix E-12, compute the fraction liquid at 252K after expanding a saturated liquid at 300K through a reversible turbine. |
10.03 - Binary VLE using Raoult's Law | Click here. | 60 | 2 |
Raoult's Law (5:39) (msu.edu) |
08.08 - Reference States | Click here. | 60 | 2 |
Thermodynamic pathways of EOS's for arbitrary reference states (uakron.edu, 20min) The development of a thermodynamic pathway from an arbitrary reference state to a given state condition is independent of the thermodynamic model. It depends only on (1a) identifying the condition of the reference state (e.g. ideal gas, real vapor, or liquid) (1b) transforming from the reference state to the ideal gas, if necessary (2) transforming from the ideal gas at the condition of the reference state to the ideal gas at the given state condition (3a) identifying the condition at the given state (3b) transforming from the ideal gas at the given state to the real fluid at the given state. The methodology is illustrated for two thermodynamic models: the Psat/Hvap model of Figure 2.6c,Eqs 2.45,47 vs. the PR EOS. The screencast is a bit long, but it covers 16 sample calculations (8 for H and 8 for S) and comparisons between PREOS vs Psat/Hvap. You might like to refer back to Sections 2.10 and 3.6 to review the Psat/Hvap model and the elemental reference state. Push pause before each sample calculation and check whether you can predict the next answer. Comprehension Questions: 1. Compute "H" by hand for propane at 80C and 3 MPa relative to a reference at 230K and 1bar, assuming Cpig/R = 8.85 and the PR EOS. You may use PREOS.xlsx to compute H-Hig, but you must show your hand calculations for each step (1a-3b). Compare your answer to the result tabulated in PREOS.xlsx. |