Top-rated ScreenCasts

Text Section Link to original post Rating (out of 100) Number of votes Copy of rated post
13.01 - Local Composition Theory Click here. 68 10

Local Composition Concepts (6:51) (msu.edu)

The local composition models of chapter 13 share common features covered in this screencasts. An understanding of these principles will make all the algebra in the models less daunting.

Comprehension Questions:

1. In the picture of molecules given in the presentation on slide 2, what is the numerical value of the local composition x11?
2. In the same picture, what is overall composition x1?
3. What value of Ω21 can you infer from 1 and 2 above and the equations on slide 3?

07.06 Solving The Cubic EOS for Z Click here. 68 5

5. Peng Robinson Using Solver for PVT and Vapor Pressure - Excel (4:42) (msu.edu)

Describes use of the Goal Seek and Solver tools for Peng-Robinson PVT properties and vapor pressure.

Comprehension Questions:

1. Which of the following represents the vapor pressure for argon at 100K?
(a) 3.000 bars (b) 4.000 bars (c) 3.26903 bars.

13.02 - Wilson's Equation Click here. 66.6667 6

Wilson's model concepts (2:44) (msu.edu)

The background on the assumptions and development of Wilson's activity coefficient model.

Comprehension Questions:

1. What value is assumed by Wilson's model for the coordination number (z)?
2. What are the values of Λ21 and Λ12 at infinite temperature, according to Wilson's equation?
3. Solve for x1+x2Λ12 in terms of volume fraction (Φ1) and mole fraction (x1) at infinite temperature.
4. What type of phase behavior is impossible to represent by Wilson's equation?

04.02 The Microscopic View of Entropy Click here. 65 4

Principles of Probability I, General Concepts, Correlated and Conditional Events. (msu.edu, 17min) (Flash)
Comprehension Questions:
1. Estimate the probability of pulling an king from a randomly shuffled deck of 52 cards.
2. A coin is flipped 5 times. Estimate the probability that heads is observed three of the 5 times.
3. A die (singular of dice) is a cube with the numbers 1-6 inscribed on its 6 faces. If you roll the die 7 times, what is the probability that 5 will be observed on all 7 rolls?

04.02 The Microscopic View of Entropy Click here. 65 4

Principles of Probability II, Counting Events, Permutations and Combinations. This part discusses the binomial and multinomial coefficients for putting particles in boxes. The binomial and multinomial coefficient are used in section 4.2 to quantify configurational entropy. (msu.edu, 16min) (Flash) You might like to check out the sample calculations below before attempting the comprehension questions.
Comprehension Questions:
1. Write the formulas for the binomial coefficient, the multinomial coefficient, and the multinomial with repetition.
2. Ten particles are distributed between two boxes. Compute the number of possible ways of achieving 7 particles in Box A and 3 particles in Box B.
3. Note that the binomial distribution is a special case of the multinomial distribution where the number of categories is 2. Also note that the total number of events for a multinomial distribution is given by M^N where M is the number of categories (aka. outcomes, e.g. boxes) and N is the number of objects (aka. trials, e.g. particles). The probability of a particular observation is given by the number of combinations divided by the total number of events. Compute the probability of observing 7 particles in Box A and 3 Particles in Box B.
4. Ten particles are distributed between three boxes. Compute the probability of observing 7 particles in Box A, 3 particles in Box B, and zero particles in Box C.
5. Ten particles are distributed between three boxes. Compute the probability of observing 3 particles in Box A, 3 particles in Box B, and 4 particles in Box C.

11.02 - Calculations with Activity Coefficients Click here. 65 4

This example shows how to incorporate activity calculations into Excel for solutions that follow the Margules 1-parameter (M1) model.(9min, uakron.edu)

You should be able to adapt this procedure along with the procedure for the multicomponent ideal solutions to create a multicomponent M1 model. If you are having trouble, the video for the multicomponent SSCED model illustrates a very similar procedure. You can check your answers by putting in the same component twice. For example, instead of an equimolar binary mixture, input a quaternary mixture with 0.25 moles of methanol, 0.25 methanol (ie. type it as if it was another component), 0.25 of benzene and 0.25 of benzene. If you don't get the same results as for the binary equimolar system, check your calculations.Note: This is a companion file in a series. You may wish to choose your own order for viewing them. For example, you should implement the first three videos before implementing this one. Also, you might like to see how to quickly visualize the Txy analog of the Pxy phase diagram. If you see a phase diagram like the ones in section 11.8, you might want to learn about LLE phase diagrams. The links on the software tutorial present a summary of the techniques to be implemented throughout Unit3 in a quick access format that is more compact than what is presented elsewhere. Some students may find it helpful to refer to this compact list when they find themselves "not being able to find the forest because of all the trees."

Comprehension Questions: Assume the SCVP model (Eq. 2.47).
1. Develop a Pxy diagram for the IPA+water system like Figure 10.8c, guessing values of A12 until you match the maximum pressure (azeotrope). What value of A12 did you find? (Hint: A12 is not the same as A12*RT.)
2. Develop a Pxy diagram for the acetone+chloroform system like Figure 10.9c, guessing values of A12 until you match the minimum pressure (azeotrope). What value of A12 did you find? (Hint: A12 is not the same as A12*RT.)
3. Develop a Pxy diagram for the acetone+acetic acid system like Figure 10.9a, guessing values of A12 until you match the pressure at x1=0.5 (305mmHg). What value of A12 did you find? (Hint: A12 is not the same as A12*RT.)

11.13 - Osmotic Pressure Click here. 64 10

Osmotic Pressure (7:23) (Learncheme.com)

A derivation of the relation for osmotic pressure, and an explanation of why the pressures are different on each side of the semi-permeable membrane.

11.12 - Lewis-Randall Rule and Henry's Law Click here. 63.3333 12

Introduction to Henry's Law (10:16) (msu.edu)

Fugacities are calculated relative to standard state values, and the relations developed earlier in the chapter use a pure fluid standard state. What if the pure fluid does not exist as a liquid when pure? One choice is to use Henry's law.

11.06 - Redlich-Kister and the Two-parameter Margules Models Click here. 62.8571 7

Two-parameter Margules Equation (5:05) (msu.edu)

An overview of the two parameter Margules equation and how it is fitted to a single experiment.

05.5 Liquefaction Click here. 60 2

Joule-Thomson Expansion (LearnChemE.com, 7min) describes the Joule-Thomson coefficient - (dT/dP)H. For non-ideal fluids (including liquids), the temperature usually drops as the pressure drops. From a molecular perspective, it requires energy to rip molecules apart when they are in their attractive wells, and this energy must be taken from the thermal energy of the molecules themselves if the system is adiabatic. This video refers to the PREOS.xls spreadsheet to be used more in Unit II, but you can get the idea of how the Joule-Thomson expansion provides a basis for any liquefaction of any chemical, including the liquefaction that occurs in refrigeration and the one that occurs in a process designed to simply recover liquid product (e.g. liquefied natural gas (LNG), aka. methane).

Comphrehension Questions:

1. Referring to the table for R134a in Appendix E-12, compute the fraction liquid at 252K after throttling from a saturated liquid at 300K.

2. Referring to the table for R134a in Appendix E-12, compute the fraction liquid at 252K after expanding a saturated liquid at 300K through a reversible turbine.

Pages