Toprated ScreenCasts
Text Section  Link to original post  Rating (out of 100)  Number of votes  Copy of rated post 

07.09 The Molecular Basis of Equations of State: Concepts and Notation  Click here.  48.8889  9 
Nature of Molecular Interactions  Macro To Nano(8min). (uakron.edu) Instead of matching the critical point, we can use experimental data for density vs. temperature from NIST as a means of characterizing the attractive energy and repulsive volume. A plot of compressibility factor vs. reciprocal temperature exhibits fairly linear behavior in the liquid region. Matching the slope and intercept of this line characterizes two parameters. This characterization may be even more useful than using the critical point if you are more interested in liquid densities than the critical point. In a similar manner, you could derive an EOS based on squarewell (SW) simulations and use the SW EOS to match the NIST data(11min), as shown in this sample calculation of the ε and σ values for the SW potential. In this lesson, we learn how to characterize the forces between individual atoms, which may seem quite unreal or impractical when you first encounter it. On the other hand, "nanotechnology" is a scientific discipline that explores how the manipulation of nanostructure is now quite real with very significant practical implications. "The world's smallest movie" shows dancing molecules, (IBM, 2min) demonstrating the reality of molecular manipulation, and the accompanying text explains some of the practical implications. Along similar lines, researchers at LLNL and CalTech have developed 3D printers that can display "voxels" (the 3D analog of pixels) of ~1nm3. That's around 10100 atoms per voxel. Since 201314, chemical/materials engineers have been building nanostructures (TEDX, 13min) in the same way that civil engineers build infrastructure.

14.07 Plotting Ternary LLE Data  Click here.  48  5 
Hints for Generating LLE Envelopes (2:25) (msu.edu) This screencasts makes several recommendations that help generate LLE phase envelopes most successfully. 
13.04  UNIQUAC  Click here.  47.2727  11 
UNIQUAC concepts (6:44) (msu.edu) Concepts and assumptions used in developing the UNIQUAC activity coefficient method. This method introduced the use of surface area as an important quantity in calculation of activity coefficients. 
11.02  Calculations with Activity Coefficients  Click here.  46.6667  3 
This example shows how to predict activity coefficients in Excel using the Margules AcidBase (MAB) model.(8min, uakron.edu) Sometimes you just need a quick estimate of whether to suspect an azeotrope or LLE or some other anomalous behavior. If the MAB model indicates a possible problem, it's time to go to the library or the lab and validate your model with experimental data. Note: This is a companion file in a series. You may wish to choose your own order for viewing them. For example, you should implement the first three videos before implementing this one. Also, you might like to see how to quickly visualize the Txy analog of the Pxy phase diagram. If you see a phase diagram like the ones in section 11.8, you might want to learn about LLE phase diagrams. The links on the software tutorial present a summary of the techniques to be implemented throughout Unit3 in a quick access format that is more compact than what is presented elsewhere. Some students may find it helpful to refer to this compact list when they find themselves "not being able to find the forest because of all the trees." Comprehension Questions 
10.04  Multicomponent VLE & Raoult's Law Calculations  Click here.  46.6667  3 
This example hypothesizes a "prequel" to Example 10.1 in the form of a liquid reactor at 20 bars and asks what temperature the reactor must have been in order to result in the flash at 320K and 8 bars if no heat was added. This requires an adiabatic flash calculation. (7min, uakron.edu) The procedure demonstrated here applies the enthalpy pathway of Fig. 2.6c, with Eqn. 2.45 to estimate heats of vaporization. With this approach, you should be able to solve for mass and energy balances of any mixture at any vapor fraction. You should watch the video about Multicomponent VLE for Ideal Solutions before this one (see link above). Note: This is a companion file in a series. You may wish to choose your own order for viewing them. For example, you should implement the first three videos before implementing this one. Also, you might like to see how to quickly visualize the Txy analog of the Pxy phase diagram. If you see a phase diagram like the ones in section 11.8, you might want to learn about LLE phase diagrams. The links on the software tutorial present a summary of the techniques to be implemented throughout Unit3 in a quick access format that is more compact than what is presented elsewhere. Some students may find it helpful to refer to this compact list when they find themselves "not being able to find the forest because of all the trees." Comprehension Questions 
07.06 Solving The Cubic EOS for Z  Click here.  46.6667  3 
Using a macro to create an isotherm (Excel) (msu.edu, 14:31) The tabular Excel display is convenient for viewing all the intermediate values, but no so good for building a table such as for an isotherm. This screencast shows how to write/edit a macro to build a table by copying/pasting values. The screencast creates an isotherm on a Z vs. Pr plot over 0.01 < Pr < 10. 
01.6 Summary  Click here.  46.6667  9 
The objectives for Chapter 1 were: 1. Explain the definitions and relations between temperature, molecular kinetic energy, To these, we could add expressing and explaining the first and second laws. Make a quick list of these expressions and explanations in your own words, including cartoons or illustrations as you see fit, starting with the first and second laws. 
12.02  The van Laar Model  Click here.  45.7143  14 
The van Laar Equation (5:54) (msu.edu) The van Laar equation uses the random mixing rules discussed in Section 12.1 with the internal energy to approximate the excess Gibbs Energy. What we learn is that it is possible to develop models using fundamental principles. Though this model is not used widely in process simulators, it provides a stepping stone to more advanced models. 
06.2 Derivative Relations  Click here.  45  4 
Assembling your derivative toolbox including the triple product rule, (uakron.edu, 13min) Beginning with the fundamental property relation, substitutions lead to Eqns. 6.46.7. Differentiating these and equating through exact differentials leads to Eqns. 6.296.32 (aka. Maxwell's Relations). Combining Maxwell's Relations with Eqns. 6.46.7 leads to Eqns. 6.376.41. With these tools in hand, and Eqn. 6.15 (aka. Triple Product Rule), you have all the tools you need to quickly transform any derivative into "expressions involving Cp, Cv, P, V, T, and their derivatives." This capability is fundamental to obtaining expressions for U, H, and S from any given equation of state for any chemical of interest. Four sample derivations are illustrated: (∂U/∂V)_{T}, (∂T/∂S)V, (∂T/∂V)_{S}, (∂S/∂V)A, Comprehension Questions: 1. Transform the following into "expressions involving Cp, Cv, P, V, T, and their derivatives:" (∂T/∂V)_{S}. 2. Transform the following into "expressions involving Cp, Cv, P, V, T, and their derivatives." Your expression may involve absolute values of S as long as they are not associated with any derivative. (∂T/∂U)_{P}. 
10.06  Relating VLE to Distillation  Click here.  44.4444  9 
Distillation is the primary choice for separations in the petrochemical industry. Because the majority of chemical processing involves separations/purifications, that makes distillation the biggest economic driver in all of chemical production. Therefore, it is very important for chemical engineers to understand how distillation works (21min, uakron.edu) and how VLE plays the major role. This video is a bit long, but it puts into context how phase diagrams and thermodynamic properties relate to very important practical applications. You may find it helpful to reinforce the conceptual video with some sample calculations.(12min) At the end of the video, you should be able to answer the following: Consider the acetone+ethanol system. Use SCVP (Eqn 2.47) to answer the following.
