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5.7 FLUID FLOW

Consider the general flow system of Fig. S-5.5a in which work and heat are transferred and the fluid under-
goes changes in kinetic and potential energy. Recognize that the compressor or pump in the schematic could
be replaced with an expander or turbine. Rather than deriving an integral equation between points 1 and 4 in
the schematic, let us consider a balance over a differential element at steady-state as shown in Fig. S-5.5b
where the possibility of heat and work transfer are permitted. The steady-state balance for a single stream
becomes:1

For a differential element, Hout = Hin + dH, and 

,

The differential balance becomes

Recognizing , and over practical distances g is constant, resulting in .

The entropy balance for the differential system of Fig. S-5.5b,

and Sout = Sin + dS,

1. Note that the velocity in this equation is a mean velocity.
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Figure S-5.5 (a) Schematic of a general overall system, and (b) differential bal-
ance
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2 Unit I First and Second Laws

Combining with the energy balance,

Noting the fundamental relation for enthalpy, dH = TdS + VdP,

Although H and S are state properties, TdS is path-dependent, therefore VdP is path-dependent and must be
evaluated along the actual path. The term TdSgen represents the losses due to viscosity, and is often called the
lost work, lw. 

S-5.7

The energy balance becomes

S-5.8

The treatment of d(lw) depends on the device. Typically, the differential balance is integrated over the indi-
vidual pieces of equipment in Fig. S-5.5a in the three categories: 1) pipes or fittings, (lw)f ; 2) pumps or
compressors, (lw)p; 3) expanders or turbines, (lw)t. 

Pipes
The frictional losses in pipes can be predicted by an empirical variable f known as the Fanning friction fac-
tor, and the losses due to fittings or sudden cross-section changes can be handled separately

S-5.9

where D is the diameter of the pipe and d(lw)fittings is the lost work due to fittings and sudden cross-section
changes. The friction factor is relatively insensitive to considerable temperature changes. Work producing/
generating devices are not present in flow through pipes, dWS = 0,

S-5.10

For an incompressible fluid in a pipe, the density changes will be negligible. Integrating term by term,
where ρ is the mass density,

S-5.11

For a compressible fluid such as a gas, velocity and density can change appreciably with pressure and
temperature. The mass flowrate is constant at steady state,
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where A is the cross-sectional area of the pipe, G ≡ u/V = uρ, and G is called the mass velocity and is con-
stant when A is constant. Using u = G/ρ, du = (−G/ρ2)dρ. Substituting into Eqn. S-5.10 for a horizontal pipe
without fittings or sudden cross-section changes,

,

For an ideal gas,

(ig) 

where (MW) is the molecular weight. If the flow is isothermal,

(ig) S-5.13

The Fanning friction factor, f, depends on the properties of the fluid and the size and roughness of the
pipe. The friction factor is most easily characterized in terms of the dimensionless Reynolds number, Re =
Duρ/μ, where D is the diameter of the pipe, ρ is the fluid mass density, and μ is the fluid viscosity. The rela-
tionships for smooth pipes are:

 for Re < 2100 S-5.14

 for 3000 < Re < 3. E 6 S-5.15

Below Re = 2100 the flow is laminar; above 4000 the flow is turbulent. The range of Reynolds number
between 2100 and 4000 is known as the transition region where the friction factor correlations are somewhat
uncertain because the flow is in between the laminar and turbulent flow regimes. Fluid mechanics textbooks
can be consulted for calculating flows in rough pipes, fittings, sudden contractions or expansions, non-circu-
lar pipes, or non-isothermal conditions.

Pumps or Compressors
The lost work due to pump/compressor irreversibility, (lw)p, is incorporated into the energy balance by the
pump/compressor efficiency

 where WS > 0, (lw)p > 0 S-5.16

WS is the actual work transferred by the pump/compressor. Therefore, the terms WS − (lw)p in the energy bal-
ance can be replaced by ηWS. For a flow system including piping for an incompressible fluid, Eqn. S-5.11
becomes

S-5.17

By analogy, an isothermal pump or compressor for a compressible fluid will result in ηWS on the right-hand
side of Eqn. S-5.13.
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Turbines or Expanders
The lost work due to turbine/expander irreversibilities (lw)t, is incorporated by the turbine/expander effi-
ciency

 where WS < 0, (lw)t > 0. S-5.18

WS is the actual work interaction of the fluid with the turbine/expander. Therefore the terms WS – (lw)t in the
energy balance may be replaced with WS /η. By analogy with Eqn. S-5.17 for an incompressible fluid

S-5.19

A similar modification may be made to Eqn. S-5.13 for an isothermal turbine/expander for a compressible
fluid.
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