C.2 ACTIVITY COEFFICIENT (GAMMA-PHI) METHOD

The equation that must be solved is:

\[y^V_i P = x^V_i \phi_i P_{i sat} \exp \left(\frac{V_i^L (P - P_{i sat})}{RT} \right) \]

Bubble P

1. Know \(x_i, T \)
 Calc \(\phi_i P_{i sat} \). Assume modified Raoult’s law for first \(P, y_i \) calculation.

2. Calc \(\phi_i \)'s. Poynting correction.

3. \(y_i = x_i \phi_i P_{i sat} = x_i K_i \)

4. \(y_T = \sum y_i \)

5. \(y_T \) changed? Yes for first inner loop pass.
 No

6. \(y_i = y_T/y_T \)
 Calc \(\phi_i \) at new \(y_i \)

7. \(y_T = 1? \)
 Yes
 No

8. if \(y_T > 1, P \uparrow \)
 if \(y_T < 1, P \downarrow \)

9. Guess \(P \)

10. Bubble \(P \) and \(y_i \) found

Inner loop can often be eliminated, and step 6 moved here.
Bubble T

1. Know x_i, P
 Assume Raoult’s law for first T_i, y_i calculation.

2. Calc $\phi_i^{sat}, \gamma_i, P_i^{sat}, \phi_i^\gamma$
 Poynting correction.

3. $y_i = \frac{x_i \gamma_i \phi_i^\gamma}{P}$

4. $y_T = \sum_{i} y_i$

5. y_T changed? Yes for first inner loop pass.

6. $y_i = \frac{y_i}{y_T}$
 Calc ϕ_i^γ at new y_i

7. $y_T = 1$?
 Yes
 No

8. if $y_T > 1$, $P \downarrow$
 if $y_T < 1$, $P \uparrow$

9. Guess T

10. Bubble T and y_i found

Dew P

1. Know y_i, T
 Calc ϕ_i^{sat}, P_i^{sat}. Assume Raoult’s law for first P, x_i
 calculation, then calc γ_i at x_i.

2. Calc ϕ_i^γ, Poynting correction.

3. $x_i = \frac{y_i \phi_i^\gamma}{\gamma_i \phi_i^{sat}}$

4. $x_T = \sum_{i} x_i$

5. x_T changed? Yes for first inner loop pass.

6. $x_i = \frac{x_i}{x_T}$
 Calc γ_i at new x_i

7. $x_T = 1$?
 Yes
 No

8. if $x_T > 1$, $P \downarrow$
 if $x_T < 1$, $P \uparrow$

9. Guess P

For ideal vapor mixture, inner loop not required

Inner loop can often be eliminated, and step 6 moved here.