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Introduction to Molecular Simulation 
Carl T. Lira 

 
This supplement complements and extends the textbook discussion in Chapter 7 of Introductory 
Chemical Engineering Thermodynamics, 2nd ed., J.R. Elliott, C.T. Lira. 
Comment on notation: vectors in this handout are denoted by bold typeface. 
 
The importance of configuration 
 
 A major objective of the engineering community is to represent the macroscopic PVT 
fluid properties with sufficient accuracy to provide representations of the departure functions. 
For a real fluid, the density dependence of energy and entropy are equally important; the Gibbs 
energies are used in phase equilibria, G = U + PV – TS . However, consider that relatively little 
molecular information is used in the development of the cubic equations such as the Peng-
Robinson equation of state discussed in Chapter 7. The equation is an extension of the van der 
Waals approach that uses a parameter to represent the hard cores of molecules, b,  and a 
parameter to represent the attractive potential, a. The objective of EOS modeling is to fit the 
critical point and the dependence of macroscopic properties on the acentric factor, which is also 
an empirical property. 
 Significant improvements in equations of state have occurred over the past thirty years, 
and some of the major advances are introduced in Chapters 15 and 19 where fluid structure and 
hydrogen bonding are represented more fundamentally. However, equally important are insights 
gained by molecular simulations that permit study of microscopic phenomena that challenge 
engineering models. Sometimes the behavior can be explored only marginally with 
experimentation. Often spectroscopic measurements can be used to infer certain molecular 
ordering, but modeling fluids with molecular simulation enhances such studies. Many of the 
systems of significant interest in the chemical and biological engineering communities are too 
complex to model accurately with conventional engineering models. For example, emulsions, 
proteins, RNA, DNA and biological membranes are composed of large molecules with 
complicated structures and are highly ordered due to hydrogen bonding. 
 
Atoms, sites and molecules 
 

For simulations of thermodynamics properties molecules are represented by models of 
atoms connected by bonds. Atoms are typically the smallest particles modeled. Commonly even 
this level of detail is not necessary, and a functional group such as CH3 may be a modeled as a 
sphere with an equivalent volume and a mass calculated by summing the atoms in the site. Such 
a functional group is called a united atom site. Within simulation literature, a site refers to either 
an atom or a functional group, depending on the level of detail in the simulation. The united 
atom characteristic is implied when discussing sites composed of multiple atoms. 
 
The Boltzmann Distribution 
 
 A principle important to understanding some of the equations in this handout is the 
Boltzmann distribution. Briefly, the distribution gives the relative weights for probability of 
events. Consider that the probability )( iEp of a particular energy state must be some function of 

the energy ).()( ii EfEp   Likewise, in some other system, the probability should follow the 

same equation ).()( jj EfEp   The probabilities should be independent, and the probability of 
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a joint probability is the product,  ).()()()()( iijiji EfEfEpEpEEp   However, the 

composite system should follow the same statistics and ).()( jiji EEfEEp   The only way 

these last two expressions can be consistent is if )()()( jiji EfEfEEf  . We have such a 

mathematical function – the exponential function, exp( ) exp( )exp( )i j i jE E E E  . By further 

analysis by connecting the systems thermally, introductory statistical mechanics shows1 that the 
correct weighting function including the temperature is )/exp()( kTEEp ii  . This is known as 

the Boltzmann distribution. 
 
Maxwell-Boltzman Velocity Distribution 
 

Consider kinetic energy. The velocity distribution is given by the Boltzman probability in 
each principle direction. Since the probability function is )/exp( kTEk and since for a single 

particle, 2)2/1( mvEk  , the velocity probability weighting function is a Gaussian curve, 

)).2/(exp()( 2 kTmvvp xx 


 Normalizing gives )).2/(exp()2/(()( 22/1 kTmvkTmvp xx  
 

Converting to molecular weight, Mw and velocities in Å/ps, T in K, 

)).314.8/(5exp()314.8/(5()( 22/1 TvMTMvp xwwx  
 The most probable velocity (expectation 

value) is zero because velocity is a vector and the probabilities are equally likely in opposite 
directions. Note that determination of expectation values are often ‘unsigned’ so often involve 
integrating from zero to infinity and doubling the integral value. 

Velocity Distribution for CH3 at 300K
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Since the probability of velocity in each principle direction is an independent probability, so the 
simultaneous probability is )()()( zyx vpvpvp


. The probability of simultaneous velocities in an 

element of ‘velocity space’ is 
.))314.8/(5exp()314.82/(()()()(),,( 22/3

zyxwwzyxzyxzyx vdvdvdTvMTMvdvdvdvpvpvpvvvdF


 
where note that when the exponent terms are multiplied the arguments in the exponents add, and 

2222
zyx vvvv  . We wish to discuss the speed distribution. To discuss this, we convert the 

velocity distribution to an integral over speed. The conversion results in dvvvdvdvd zyx
24


, 

where v is the scalar speed. If you have trouble seeing this conversion, recall that the conversion 

Figure 1. Velocity 
distribution for united 
atom CH3 site at 300K. 
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of the volume differential conversion from Cartesian to radial coordinates is drrdxdydz 24 . 
The resulting speed distribution is discussed next. (For more details on this manipulation, see 
also http://galileo.phys.virginia.edu/classes/252/kinetic_theory.html).  A Gaussian distribution in 
velocities results in the Maxwell-Boltzman distribution for speeds.  
 
Maxwell-Boltzmann Speed Distribution 
 

The Maxwell-Boltzmann speed distribution for the probability of a particular speed P(v) 
is typically written in terms of the differential probability, dF(v). It is convenient to work with 
velocities in Å/ps. Expressed in ps/ Å the differential is 

dv
T

vM
v

T

M
dvvPvdF ww
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
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Where Mw is molecular weight, v is velocity in Å/ps, T is temperature in Kelvin. The probability 

is normalized so that 



0

)(1 dvvP . The cumulative speed distribution is 
v

dvvPvF
0

)()( which 

gives the percentage under a certain speed. The Maxwell-Boltzmann velocity and speed 
distributions can be confirmed by sampling during molecular simulations. Also, the Maxwell-
Boltzmann distribution can be used to select initial velocities for a simulation. 
 

Speed Distribution at 300K
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Figure 2. Maxwell-Boltzmann speed 
distribution for several united atom 
sites at 300K. Note that the speed of 
H is much higher than other atoms 
or sites. Simulations including H 
atoms must use small time steps 
because the velocities are so high. 

Figure 3. Cumulative speed 
distribution for united atom 
CH3 site at 300K. 
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Calculating Energy in Simulated Systems 
 
 Recall from Chapter 1 that the internal energy is the sum of the kinetic and potential 
energies of the particles that comprise a fluid, U = EKE + EPE. The kinetic energy contribution is 
determined by temperature, independent of whether the fluid is an ideal gas. When a molecule 
contains multiple atoms, we can consider each atom or a group of atoms (e.g. CH3) as a united 
atom site. When we consider a united atom site, we typically ignore vibrations and rotations of 
the site. A site has a translational degree of freedom in each dimension of (1/2)kT, which results 
in (1/2)mv2 = (3/2)kT. On a molecular basis, the kinetic energy for an N molecule system is given 
by 
 

 21 3

2 2KE i i m
sites

E m v N NkT   (S7.1) 

 
where Nm is the number of sites per molecule and mi is the mass of the corresponding sites1. It is 
more convenient to use the site molecular weight instead of the site molecular mass. On this 
basis, multiplying both sides by Avagadro’s number, and since NAmi = Mw,i is the molecular 
weight, 
 

 2
,

1 3

2 2w i i m
sites

M v N NRT  (S7.2) 

 
The kinetic energy of a multisite molecule may be calculated from the kinetic energies of the 
sites that make up the molecule.  For a molecule composed of more than one site, the total 
translational kinetic energy of the sites in the molecule is equal to the sum of the vibrational, 
rotational, and center of mass translational kinetic energies of the molecule.  Monatomic 
molecules have only translational kinetic energy. 
 
Vibrational and rotational kinetic energies are important for understanding spectroscopy, but are 
not necessary for relating the total kinetic energy to temperature. While the kinetic energy of a 
molecule can be computed by summing the vibrational and rotational energies relative to the 
center of mass and the translational energy of the center of mass, it is easier to sum the kinetic 
energy of all the atoms. The equivalence of the two summations can be established through a 
reference frame argument. 
 
To understand this subtlety more completely, consider the translational kinetic energy of the 
center of mass. The center of mass kinetic energy is calculated by squaring the net momentum of 
the molecule, and then dividing by the molecular mass,  
 

 

2
,

sites k in one molecule

,
sites k in one molecule

( )

2

w k k

w k

M

M




v
 (S7.3) 

 
                                                 
1 One degree of freedom must be removed in each dimension if the system’s center of mass is fixed. For a large 
system, this correction is negligible. For a small system, the right side becomes (3/2)(NmN1)kT; for formulas using 
Mw, use (3/2)(NmN1)RT. 
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the summation of momentum in the numerator is a vector sum over the sites in the molecule.2 
The translational kinetic energy for the center of mass is not equal to the sum of the kinetic 
energies of the sites that make up the molecule; some of the sites have velocities in opposing 
directions (vibrational) or around the center of mass (rotational), thus the translational center of 
mass kinetic energy will always be less that the kinetic energy calculated by summing the site 
kinetic energies. The average kinetic energy per molecule will be 
 

 2
,

1 3

2 2w i i m
sites

M v N RT
N

  (S7.4) 

Because the kinetic energy of a system depends on temperature only, a liquid phase 
molecule at temperature T has the same kinetic energy as a vapor phase molecule of the same 
species at T. Therefore, differences in the internal energies of the vapor and liquid phases are 
determined by the potential energies only. This is a significant finding because it permits 
decoupling of the kinetic and potential energies in property models.  
 Modeling of the potential energies is determined fundamentally by adding up the pair 
potentials of atomic sites and including potential energies of bonds (often modeled as springs 
with Hooke’s law), and bending and torsional potentials due to twisting of molecules. The 
summed potential energy is called the configurational energy.  
 The configurational energy is determined by summing all the intramolecular energies and 
by separately summing all the intermolecular energies due to pair potentials. In multi-atom 
molecules, the pair potentials are often represented by the sums of the pairs of interactions for all 
sites in the molecules as illustrated in Figure 4. 
 

 
 

Figure 4. (a) Arrows representing the four pair interactions for two 
diatomic molecules. (b) Arrows representing a wagging motion that 
changes the potential energy by pulling the atoms from their 
equilibrium positions. 

 
Rigorous representation of all potential energy effects in complex molecules is an 

advanced topic with details sufficient for an entire academic course. The objective of this brief 
section is to provide an overview of the major concepts of simulation with the expectation that 
all chemical engineers benefit from understanding the basic principles.  
 
The Ergodic Theorem 
 
 Fluid molecules undergo constant motion. Collisions of fluid molecules with the 
container walls result in abrupt changes in momentum. The changes in momentum create forces 
on the container walls that are measured as fluid pressure.  The collisions are fundamentally 
discrete events that result in minute fluctuations in pressure. A pressure gauge displays a steady 
pressure at equilibrium because the readout responds to the average effect of collisions on the 
instrument. Local density undergoes constant fluctuations also due to changes in the number of 

                                                 
2 A convenient method to calculate the square of momentum is to use the dot product discussed later in this 
document. 

 (b) 
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particles in a given region of the container as the particles move about. Since intermolecular 
potentials are dependent on constantly changing intermolecular distances, the configurational 
energy fluctuates about a mean value. Particles accelerate when falling into a potential energy 
well, and they decelerate when leaving a potential energy well. Considering the kinetic theory 
and the coupling between velocity and temperature, this means that the temperature fluctuates. 
Similar consideration leads to the conclusion that all state properties fluctuate about mean values.  

Molecular simulations sample fluid fluctuations using two fundamentally equivalent 
methods. The Ergodic theorem states that the average of samples (snapshots) of molecular 
configurations taken at a given time from a large system is equivalent to following a small 
system as it fluctuates over time. These two approaches form the basis for two major simulation 
methods; the Monte Carlo method and the Molecular Dynamics method. The two simulation 
methods confirm the theorem because simulations from the two methods result in the same 
equilibrium properties. 

Both simulation methods involve starting with a set of molecules packed into a 
simulation box. In some cases, the molecules are initially packed in lattice structures; in other 
cases the molecules are placed randomly, by choice of the programmer.  Then the average value 
that would be determined from experiment, known as the expectation value, is determined by 
sampling configurations of the molecules. 

 
Limitations of Simulation System Size and Time 
 
 Despite continuing advances in computational speed and continuing decreases in costs of 
computer technology, simulations are currently used to study very small systems for very short 
times. Consider the complexity of pair interactions together with bond vibrations and torsions. 
For two tetra-atomic molecules, there are sixteen pair interactions (N2). Add to this the bond 
vibrations that depend on the symmetry of the molecule, and the effects of bond torsions if they 
are present. Now consider a portion of a single protein molecule with a molecular weight of 
10,000 g/mol. Then add sufficient solvent to solvate the protein. Usually the pair potentials are 
truncated after about three molecular diameters, so that it is not necessary to sum the 
intermolecular potentials for a given atom with all pairs in the system, but the task is still 
significant because of the bookkeeping to track the neighbors and the neighbor changes as the 
system evolves during the simulation. This means that atomistic simulations of systems as large 
as living cells are not yet possible. Simulations are usually limited to portions of proteins for 
example, or portions of cell membranes. Consider that one cubic centimeter of water contains 
one gram, 1g/(18g/mol)*(6.022E23molecules/mol) = 3.3E22 molecules. Simulation of a system 
of this size is daunting and not done atomistically.  

For homogeneous, single component systems, most simulations are performed with less 
than 100,000 atoms, closer to 1000 atoms if possible. For homogeneous systems, a simulation 
box with an equivalent length on 10 atoms on a side results in 1000 molecules (10x10x10). For a 
potential that with a cutoff of 2.5, the number of neighbors in that range, Nn, goes as Nn ~ (N/V) 
 (2.5)3/6 1.  Consider a simulation of 1000 methane molecules represented as spheres with 
diameters of 0.36nm at a liquid density near the normal boiling point of 0.42 g/cm3.  The number 
density is N/V = (0.42g/cm3)(1E-21 cm3/nm3)(6.022E23/mol)/(16g/mol) = 15 molec/nm3. 
The size of the sphere with nearest neighbors is V = (2.5*0.36)3/6 = 0.4 nm3. Thus the number 
of nearest neighbors for calculations of the pair potentials is approximately Nn = 15*0.4 – 1 = 5. 
Each time step requires an update of 5*1000 = 5,000 calculations of the pair potential. 
Considering that a normal time step in an atomistic simulation is 1-2 fs, the number of 
intermolecular pair potential evaluations needed is approximately 5,000,000,000 per nanosceond 
of simulation time.  
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 Simulation time is limited for full atom simulations. If the objective is to obtain 
equilibrium properties for a homogeneous fluid, properties can often be obtained by simulating 
the system for a few nanoseconds. However, events that occur on time scales of microseconds 
are still a challenge reach for an atomistic simulation, especially for atomistic molecular 
dynamics. Sometimes the systems are simplified to retain only the most crucial elements of the 
atomistic details. Such a procedure is called coarse graining, and results in a course grain model. 
United atom sites are used commonly in coarse grain simulations. 
 
Periodic Boundary Conditions, Cutoff distances, and the Minimum Image Convention 
 Limitations on system size are addressed in homogeneous systems using periodic 
boundary conditions.   As illustrated in Figure 5 below, the simulation system is represented as 
2D simulation of disks in a gray box. For simplicity of discussion, the system has only six 
monatomic molecules. The particle number 1 of interest for this discussion is shown with a 
continuous boundary, and the other equivalent molecules are sketched with a dotted line. Note 
that eight unshaded periodic replicas of the system have been placed around the simulation box. 
Suppose a trajectory moves particle 1 as indicated with the arrow. When particle 1 moves out of 
the box, a replacement particle is moved into the cell from the appropriate replica box. In this 
case a replica particle 1’ moves from the box above. Instead of simulating all the boxes around 
the boundary, the periodic boundary can be implemented in a very simple way. The movement 
of the particle places it at ytrial < , the y coordinate is replaced by yaccepted = ytrial + L, where L is 
the length of the box side. Similar corrections are made for the other dimensions. Multi-atom 
molecules near the boundary will often lie partly across the boundary. However, the ‘cut’ atoms 
lying outside the boundary are still bonded, but are ‘wrapped’ to the other side of the box. The 
software code is written to track bonds to assure that molecules are intact as they are wrapped. A 
good illustration of periodic boundary conditions is available at 
http://etomica.org/app/modules/sites/swmd/pbcCubic.html. 
 Note that particle 4 is near the right edge of the box and thus does not have cell neighbors 
on the right edge of the box. To calculate the intermolecular potential and forces, the images of 
particles are used as neighbors for particles near the edge of the box. In this case, when the 
neighbors for particle 4 are evaluated, the images 2’, 5’ are used as the minimum image of the 
atoms in the box. The image of 2 is quickly calculated using (x2’,y2’) =  (x2 +L,y2). The box must 
be large enough so that when long chain molecules are simulated, the distances are large enough 
that the molecular chain running out of one side of the simulation box and back in the other side 
by periodic boundary conditions does not ‘sense’ its own image by the minimum image 
convention.  
 Note that the configurational energy may be stated simply as the ‘intramolecular energies 
plus sum of (each pair)*(potential energy of the pair)’. When the minimum image condition is 
applied, each pair potential must be counted once only. Thus if the pair potential 4+2’ of Figure 
5 is calculated, the pair 4+2 must be omitted. Such double-counting is assured by using a cutoff 
distance after which the atomistic potentials are no longer summed. The box size is chosen with 
dimensions such that the box length is at least twice the cutoff distance, which eliminates any 
double-counting (relative to particle 4, particle 2’ is less than half the box length, but particle 2 is 
more than half the box length). The long range configurational energies thus omitted 
atomistically due to the cutoff are summed by integrating the pair potential using the mean 
density to determine the number of pairs in a particular volume element, and thus comprise a 
long-range correction. 
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The Principles of Monte Carlo 
 
 The Monte Carlo method simulates only the configurational energy of a molecular 
system. This is acceptable because kinetic energy is fixed with temperature (independent of 
density), and it can be added to the simulated configurational energy; the rate of molecular 
motion is not important in determining equilibrium properties. Monte Carlo simulates molecular 
motion by generating configurations solely for sampling the potential energy terms at all 
probable locations/arrangements. Monte Carlo methods can be very fast, however a limitation of 
the method is that motions are difficult to simulate for dense systems or molecular structures that 
are highly complex or large.  

In principle, atoms are moved random distances (within some maximum displacement) in 
random directions, and the potential energy of each sampled configuration is recorded. A 
technique known as ‘biased’ sampling constrains the configurations that are to be sampled to be 
configurations most likely to be in the equilibrium structure, while not preventing sampling of 
fluctuations near the equilibrium structure. In molecular simulations, all atom motions that lead 
to a decrease in potential energy are accepted. If a step goes to a higher energy state, E > 0, the 
move is not immediately discarded. For example, a system will always have fluctuations in state 
properties, and there is a probability that such a transition may occur in a real system. The 
correct weighting for this probability is given by the Boltzmann factor, exp(–E/kT). A random 
number is generated between zero and one. If the random number is less than exp(–E/kT), then 
the move is accepted. If the random number is greater than exp(–E/kT), then the move is 

0 

0 

1’ 

L

L 

L 2L 

L 

L 

trial 

accepted 

Figure 5. Illustration of the periodic boundary conditions (PBC) for a particle. When a 
particle 1 moves out of a box, the particle is replaced with the periodic image that 
moves back into the box. Also for pair potentials, interactions the minimum images are 
illustrated for particles 2, 5 relative to particle 4. A good illustration is at 
http://etomica.org/app/modules/sites/swmd/pbcCubic.html 
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rejected. Due to the functional form of the Boltzmann factor, small positive energy fluctuations 
are accepted frequently. At higher temperatures, the probability increased for accepting higher 
positive energy changes. Configurations that result in very high energies are rejected, so no time 
is wasted sampling configurations that occur with only miniscule probability. The net result of 
this biased is an efficient evaluation for the representation of the energy states sampled by a real 
system. 

 
The Principles of Molecular Dynamics (MD) 
 
 Molecular dynamics has some advantages over Monte Carlo. A principle advantage is 
that complicated systems and dense systems can be studied without developing complex 
algorithms to simulate displacements. Time-dependent events such as diffusion can also be 
studied quantitatively. Molecular dynamics implements Newton’s equations of motion on the site 
scale, so individual sites move as dictated by the net forces acting upon them. For a pair of sites, 
the force of interaction is calculated from the gradient of the potential energy, u, 
 
 F =  du/dr (S7.5) 
 

For an ensemble of molecules, the pair-wise forces are summed to determine the net 
force on each molecule. The acceleration vector is then determined. The technique appears 
simple, but requires careful implementation because the actual motions are continuous but the 
simulation is implemented with finite time steps. The Verlet leapfrog algorithm will be described 
here. For an atom at position r, the new position can be determined by writing a Taylor 
expansion, noting that vr  , and ar  , using h to denote the small time step, 
 
 )()()2/()()()()()2/()()()( 3232 hththththththt  avrrrrr   (S7.6) 
 
The acceleration at any time is a known quantity, calculated from summing the relevant pair 
potentials. 
 
 i

neighborsneighbors
i mtddtddtmt /))(/(  )(        (t)/)()(   ruaruaF  (S7.7) 

 
Rigorously, the velocities and accelerations change instantaneously with position, however the 
computer needs to calculate new positions using quantities that are considered ‘average’ over a 
small time interval. We know that v and a will be different at t + h because of the new positions. 
The velocity at a half time step should be more accurate than a full time step, 
  )()2/()2/()(          )()2/()()2/( thhttththt avvavv   (S7.8) 
Inserting this second argument into eq S7.6 results in  
  
 )2/()()( hththt  vrr  (S7.9) 
 
For a time step to the next half interval for velocity,  
 
 )()()2/()2/( thhtht avv   (S7.10) 
 
From an initial state, to start a simulation, eq. S7.7 is used to determine a(t), eq. S7.8 is used 
once to give  )()2/()()2/( ththt avv  . Then eqs. S7.9, S7.7 and S7.10 are looped 
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successively to constitute the leapfrog routine. The velocities and positions ‘leapfrog’ over each 
other as estimated by different half time-steps. The routine is repeated to follow the movements. 
Each initial state results in a set of motions known as the trajectory. 
 
Discontinuous Molecular Dynamics (DMD) 
 
 A special case of molecular dynamics uses the hard sphere potential for the atoms. Since 
no forces are exerted except at collision, the velocity of the particles is constant between 
collisions. Collision events are considered elastic, so the post-collision velocities are known for 
the incoming trajectories and velocities. The collisions events are calculated using the 
conservation of momentum and the conservation of energy. Therefore, the trajectory of a particle 
can be simulated discontinuously between collision events. The simulation code for DMD is 
significantly different than that for traditional molecular dynamics because the particles are 
moved discontinuously from one collision event to the next with known velocities. 
 
Vector Mathematics for DMD 

Consider the trajectories of two particles i  and j, each with diameter  as shown in 
Figure 6(a). The coordinates of the particles are the vectors ri = [xi, yi, zi] and rj = [xj, yj, zj] and 
they have velocity vectors vi and vj.  The position at any time, in the absence of acceleration is 

 rj = rj
o + vj

o(t  to) (S7.11) 

The collision event and collision time are most easily determined by using the relative 
position and relative velocities, (note the subscript conventions used here) 

 rij ≡ ri – rj = [rix – rjx, riy – rjy, riz – rjz] (S7.12) 

 vij ≡ vi – vj =[vix – vjx, viy – vjy, viz – vjz] (S7.13) 

Figure 6(a) shows how the relative position can be expressed as a vector difference. 
Figure 6(b) shows a relative position vector, and a relative velocity vector. If  particle ‘2’ is 
stationary as a special case, then the particles will collide when ‘1’ reaches the position shown 
with the dotted outline. When rij and  vij have opposite sense, the particles will be approaching 
and a collision is possible. The principle can be quantified using the dot product r12•v12. The dot 
product of two vectors is a scalar that may be calculated by two equivalent methods. The dot 
product can be determined using summed term-by-term multiplication of the vector components, 
or it can be found using the angle between the two vectors as shown in Figure 6(c). The vectors 
from Figure 6(b) have been rearranged to show the dot product and cosine in Figure 6(c). The 
dot product is usually easier to implement. 

 
r12•v12 = (r12x, r12y, r12z) • (v12x, v12y, v12z) = r12x v12x,+ r12y v12y + r12z v12z = |r12||v12|cos (S7.14) 

 
The dot product has a negative value when the relative position and relative velocity have an 
opposite sense as shown in Figures 6(b) and (c). When the vectors have an opposite sense, r12 
will be decreasing with time (particles approaching). We define the variable b as the dot product. 
  
 ijijijb vr   (S7.15) 
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If bij > 0, the relative position |r12| is increasing with time. If bij = 0, the relative velocity and 
relative position vectors are perpendicular. If bij < 0, the relative position |r12| is decreasing and 
there may be a collision. Two cases are illustrated in Figure 7(a) and (b). Another application of 
the dot product is useful. The dot product of a vector with itself is the magnitude squared. Thus 
 
 rij

2 = rij • rij,      vij
2

 = vij• vij (S7.16) 
 
and the kinetic energy of a particle can be calculated quickly using mi(vi• vi) / 2. 

 
 
 
 
 
 
 
 
 
(a) 
 
 
 
 
 
 
  
A collision event is dependent on whether the intermolecular separation becomes equal to 

the average molecular diameter ij = (i +j)/2 sometime in the future. Using superscript o to 
represent an initial conditions, the relative position vector at any time in the future is found by a 
generalization of eq S7.11 

 
 rij = rij

o + vij
o(t  to) (S7.17) 

  
 We may check to see if the dot product rij • rij becomes equal to ij

 in the future at some time 
increment (t  to),  
 

 ij
2 = rij • rij = (rij

o + vij
o(t  to)) • (rij

o + vij
o(t  to))  

 = rij
o• rij

o + 2 rij
o•vij

o(t  to) + vij
o• vij

o(t  to)2
  

= rij
2 + 2bij (t  to) + vij

2(t  to)2 
or  
 vij

2(t  to)2 + 2bij(t  to) + (rij
2 – ij

2) = 0 (S7.18) 
 
Solving for time using the quadratic formula, the time of collision is: 

 tc = 
2

2222 )(
)(

ij

ijijijijtimeijo

v

rvbsb
tt


     sphere collisions (S7.19) 

where 1times . The argument in the square root, bij
2 – vij

2 (rij
2  ij

2), is called the 

discriminant, and must be non-negative for a collision to occur. If it is negative, then the particles 

2 

1 

r2 

r1 

r12 

Figure 6. (a) Illustration of the relative position expressed as a vector difference, r12 = 
r1 – r2. Each particle has diameter . (b) Coordinate system for study of a 2D 
collision of disks as discussed in the text. (c) Dot product, r12·v12 as the projection of 
v12 onto r12, with magnitude r12v12cos. 

r12 

v12 



v12 

r12 

(b) (c) 

1

2
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miss each other. The smaller real root stime = 1 is used for the solution to the quadratic as shown 
in Figure 7(c). For purposes of illustration, particle i is considered stationary, and particle j is 
moved with velocity vij. The smaller real root (stime = 1) occurs when the particles collide at rj

t. 
The location labeled rj

t+ is the root that will not occur physically. 
   

 
Velocity changes  
  Calculation of velocity changes upon collision is more complex. A 2-D case of colliding 
disks will illustrate the results. Consider the situation illustrated in Figure 8. Particle ‘1’ is 
moving towards ‘2’ with relative velocity v12. To keep the derivation brief, particle ‘2’ is initially 
stationary and identical masses will be used. The collision location of 1 is shown with a dotted 
sphere. The collision will create a force on particle ‘2’ that will instataneously accelerate it to a 
fixed velocity. The force will act in the direction of the vector between the point of contact and 
the center of mass. By application of this principle, particle 2’ will move after collision in the x-
direction only, without a y-component of velocity. By Newton’s third law, an equal and opposite 
force acts on particle ‘1’. The direction of the collision force is most easy found using the 
relative position at contact r12

c as shown in Figure 8, where the superscript c denotes a property 
calculated at collision. Creating a unit vector by dividing by the magnitude of the relative force, 
, the force acts on particle 1 in the direction r12

c/ and acts on particle 2 in the direction 
r12

c/,  
Upon an elastic collision, the momentum and kinetic energy are conserved. Conservation 

of momentum is written using primes to denote post-collision properties, 
 

 1 2 2 1 2' 'm m m m  v v v v , which becomes 1 1 2 2( ' ) ( ' )m m   v v v v  (S7.20) 
 
For the case of discussion, v2 = 0, v1 = v12 . The momentum must be conserved in each direction. 
Equating the momentum before and after collision, 
 
x-momentum conservation, before = after: |'|)cos(|'|0cos|| 2112 vmvmvm       (S7.21) 

y-momentum conservation, before = after: 0)sin(|'|0sin|| 112  vmvm        (S7.22) 
Equating kinetic energy before and after collision,  
 

 
2

2
2

1
2
12 )'()'(0 vmvmmv    (S7.23) 

 

rj
o 

rj
t 

rj
t+ 

ri
o 

Figure 7. (a) illustration of two particles with positions and relative velocities that will 
result in a collision. For this case b < 0 and the discriminant > 0. (b) A case where particles 
are approaching at to

 but will not collide; b < 0, but the discriminant < 0. (c) Illustration of 
why the smaller real root is used, s = 1.

(a) (b) (c) 
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which for equal masses becomes 
 

 
2

2
2

1
2
12 )'()'( vvv   (S7.24) 

 
Eq. S7.24 is also the result of the Pythagorean theorem for a triangle with hypotenuse v12 and 
sides v1’ and v2’ at 90o (see Figure 8(b)). This result means that the angle  =  +  = 90o.  
 The angle  may be related to the dot product of relative position at collision with the 
incoming relative velocity as shown in Figure 8(c). 
 

  cos||)180cos(||cos|| 121212121212 vvvvb cc  r  (S7.25) 
which can be written 

 



cos|| 12
1212 v

vcr
 (S7.26) 

Inserting eq. S7.26 and  = 90o into eq S7.21-22, gives the scalar magnitude of the velocity 
change. Including the unit vector  /12

cr  to specify the direction of the impulse force on particle 
2 results in 
 

 
mmm

b

m

v c
c

c
c

12
122

12
122

1212 vv
rr

r 








 for equal masses, equal size  (S7.27) 

 
where for the last equality, eq. S7.20 has been used to relate to v1. It should be noted that the 
result  = 90o

 is a consequence that when one of the particles is initially stationary; the 
pythagorean theorom results as in eq. S7.24, which permitted a simple analysis to be applied. 
However the other aspects of the collision are general results. A general derivation relaxing the 
constraints of equal mass and equal size is available as an appendix. The general result is 
  

 c
ij

ijji

c
ij

i

j

j

i

mm

b

mm
r

vv
2)(

2










   sphere collisions (S7.28) 

r12
c r12

c 



y 

v2’ 


x 

v12
 

v1’ 

1 

1 

2 




v12

v1’

v2’ 

(a) (b) (c) 

Figure 8. (a) Illustration of a collision of two disks to derive the 2D result for 
collision of objects with the same mass and same diameter. (b) Pythagorean theorem 
applied to the velocity vectors (c) relation of the dot product to angle  as described 
in the text. 

v12
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Event Tracking 
 Since collision events can be forecast from existing positions and velocities, there is little 
reason to advance the simulation by discrete time steps. Instead the simulation can be advanced 
by from one collision event time to the next event time. To start the simulation, the particles are 
given initial velocities and the neighborhood surrounding a particle is scanned for collision 
events that are scheduled on a calendar. As each event is predicted, it is sorted with respect to 
time as it is entered in the calendar. Then the earliest event is executed. Whenever a collision 
occurs, all events for the two colliding particles are discarded and new events for only the 
colliding particles are predicted. Only the area in the vicinity of the event need be scanned for 
new events. These are then added to the calendar, and then the earliest event is executed. 
 
DMD and the Square-Well Potential 

A square-well potential can be added to the DMD simulation with relatively few changes. 
The square well creates an edge at R around the hard sphere, as shown in Figure 9. Since the 
gradient of the potential is zero except at the discontinuous well edge, velocities will be constant 
for distances inside or outside the well, and change only for collision or events at the well edge. 
If particles enter a well, velocities will increase. Whether particles escape from a well or bounce 
back depends on kinetic energy as explained below. This well edge is treated like a penetrable 
boundary; the velocities change discontinuously at position .  Thus, the times that the well 
edges are encountered need to be added as events.  

The equations for these and subsequently discussed events are most briefly summarized 
using generalized notation. The general equation for the well or collision event time is a 
modification of eq. S7.19 
 

 tc = 
2

2222 )(
)(

ij

ijijijijtimeijo

v

drvbsb
tt


   collision or well event  (S7.29) 

 
where dij is the generic variable to represent the distance of centers for the event (well edge or 
core collision) and 1times specifies which root is valid. The velocity changes due to either 

type of event will be  
 

Figure 9. (a) Approaching spheres that will enter the square well; (b) Spheres in 
the well that will collide; (c) Spheres in the well that will miss, but will 
experience a well event after they pass; (d) Spheres moving away that will 
experience a well event at the well limit. 

(a) (b) (c) (d) 
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2

22

jiij

rij
c
ijvel

c
ij

mmd

mdbsb







  collision or well event  (S7.30) 

and  is the relevant energy change due to the event ( = 0 for a core collision or if there is 
insufficient energy to escape the well) and the reduced mass is defined mr ≡ mimj/(mi + mj). The 
well distance is calculated using combining rules, typically (ij = ( ii + jj)/2 which 
becomes dij in eq. S7.29 and S7.30. Note that eq. S7.30 reduces to eq. S7.28 when svel = 1,  = 
0, and dij is the core collision distance. Before discussing the particulars of collisions and well 
crossings, we introduce bonds that can be represented by infinite wells. A general flow sheet for 
tracking events is shown in Figure 10. The appendix shows the general derivations. 
 
DMD and Bonded Sites 

 Bonded sites can be modeled using infinite wells to constrain the sites to realistic 
distances. As shown in Figures 11 and 12 the sites can be constrained at distances by creating a 
well with zero potential within some tolerance of equilibrium position, but an infinite potential at 
the limits of the bond stretch and bond compression. The detail of such a bond is shown in 
Figure 12. Bond angles can be constrained using pseudobonds with the same type of bond 
potentials illustrated in Figure 13. While these are not real bonds, they provide the same general 
constraints and movements as more complex continuous bond bending potentials. 

Evaluation of bonded site dynamics is very similar to the free particle dynamics 
discussed above for the square well potential, except: (1) sites can never escape from the wells; 
(2) bond distances are less than the site diameters so the bond wells are ‘inside’ the site spheres.  
The collisions with wells can be implemented using the flow sheet in Figure 10. 
 
Applications of DMD 
 Recently, DMD has been utilized in two applications that will be highlighted here. Hall 
and coworkers2 have simulated the formation of fibrils from protein molecules. These fibrils are 
associated with the plaques that form in Alzheimer’s disease. The proteins are quite large, and 
fibrils are formed by many protein strands. In the work of Hall et. al, the protein strands were 
simplified by coarse graining to create the amino acids of the protein chain as a set of spherical 
sites. The bond angles were constrained using pseudobonds. Simulations were conducted with up 
to 96 protein strands. To represent the potential energies, square well potentials were used at 
selected sites. In the simulations, the solvent was omitted, creating a fast simulation. Thus the 
protein parameters are considered to be parameters that represent energies ‘relative to the 
solvent’. Also, the simulations run faster in the presence of simulated solvent because the 
proteins are devoid of collisions with solvent. The workers have studied the phase transitions that 
occur in the system and the events leading to fibril formation. 

In another application, Elliott and coworkers3 have used DMD together with perturbation 
theory to develop a powerful method to calculate real fluid vapor pressure. The goal of this work 
is also to use coarse grained simulations to represent large molecules. The work has been 
recognized with a prize for simulation of vapor pressure.4 A major objective of the work is to 
develop transferable site potentials. A transferable potential for methyl group for instance could  
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(a) (b) 

Figure 11. (a) Creation of a molecule by bonding 
sites. The solid lines represent equilibrium distances. 
(b) Addition of pseudobonds (dotted lines) to 
constrain the bond angles. 

Figure 12. (a) Illustration of sites bonded with wells with velocities that will result in a 
collision with the compression limit. (b) Bonded sites moving with velocities that result in 
a event at the stretch limit. 
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Figure 10. Flowsheet for DMD with wells. The alphabet labels are used in supplementary 
computer code to indicate the relation of code to the flowsheet. Bonded sites use ij  at E,M 

and cannot escape from the bond wells. 
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be used for any molecule with a methyl group in a similar location within a molecule. This is 
similar to the UNIFAC approach in concept, but substantially more fundamental because it 
involves fewer assumptions, and the representation of the effect of shape on mixing is very 
accurate. The method involves using a DMD simulation of the hard molecule. Then the attractive 
potential is ‘added’ on top of the simulation using perturbation theory. Since the simulation 
provides information about the nearest neighbor identity and distance, the potential energy can 
be ‘added’ after the hard molecule simulation. For this perturbation calculation, the attractive 
potential is a step potential approximation to a continuous potential, such as that shown in Figure 
13 below. The parameters for the attractive wells are adjusted to fit the vapor pressure or other 
fundamental fluid properties. Though the step wells could be incorporated into the simulation, it 
is faster to add them to the simulation as a perturbation. 

-1.5
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-0.5
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1

0.0 1.0 2.0
r/

u
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Figure 13. Representation of the intermolecular potential as 
a series of discontinuous wells. The infinite wells at 
diameters less than  represent bonds as shown in Figure 12. 
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This supplemental example is an alternative to the textbook example. This example uses vector 
mathematics. 

Example S7.1  Computing molecular collisions in 2D 

Let the diameters of two disks, , be 4 Å, the masses be 16 g/mole, and the length of the square box, L, be 50 Å.
Start the disks at [16.7 16.7], [33.3 33.3] Å and initial velocities (Å/ps): [1.67 2.22], [1.67 2.22] where 1 Å
= 10-10 m and 1ps = 10-12 s. Note that Å and ps are convenient units to use, and that the gas constant 8.314 J/
mol-K = 8.314 kg-m2/(s2-mol-K) = 0.8314 g-(Å)2/(ps2-mol-K).

(a) Compute the temperature (K).
(b) Compute the collision times with the walls. 
(c) Compute the collision times with the disks. Which event occurs first?
(d) Compute the velocity vectors (Å/ps) after the first collision event.

Solution:

(a) T2D = Mw<v2>/(2R); <v2> = (1.672 + 2.222 + 1.672 + 2.222)/2 = 7.717 (Å/ps)2

T2D = (16g/mol)(7.717 (Å/ps)2)/(2·0.8314 g-Å2/(ps2-mol-K)) = 74.3K.

(b) The collision time with the walls depends on the wall being approached. Note that the molecular coordinate
will be within 0.5 = 2 Å of the wall coordinate when a wall collision occurs. Disk1 is approaching the north
wall and east wall (using superscripts to denote geographic directions), the collision times found by Eqn.
S7.11 are 
t1

N = (48  y1
o)/v1,y = (48  16.7)/2.22 = 14.10ps, 

t1
E = (48  x1

o)/v1,x = (48  16.7)/1.67 = 18.74ps. 
Similarly, 
t2

S = (2  y2
o)/v2,y = (2  33.3)/(2.22) = 14.10ps; 

t2
W = (2  x2

o)/v2,x = (2  33.3)/(1.67) = 18.74ps. 
Molecule 1 collides with the north wall, and molecule 2 collides with the south wall at 14.10ps. The wall col-
lisions corresponding to t1

E and t2
W will not occur.

(c)  For disk1 and disk2, the relative velocity and position are: 
 = [(1.671.67) (2.222.22)] = [  ]; 
 = [(16.7 33.3) (16.733.3)] = [16.6 16.6]; 

by Eqn. S7.15, b12 = (–16.6)(3.34) + (–16.6)(4.44) = 129.148. 
Because b21 < 0, the particles are approaching. 
v12

2 = (3.342 + 4.442) = 30.869; r21
2 = (16.62 + 16.62) = 551.12; 

the discriminant of S7.19 is D = (129.148)2  (30.869)(551.1216) = 
Then by Eqn. S7.19, 
tc = t12 = ((129.148)160.61/2)/(30.869) = 3.773ps
The intermolecular collision occurs before the wall collisions calculated in part (b).

(d)  Computing the direction after collision requires knowing relative positions and b at collision, 
 = [16.6 16.6] + [  ]t12. So  = [–16.6+3.34•3.773 –16.64.44•3.773] = 

[–3.998 ]. 
Then by Eqn. S7.15, 
b12

c = 3.998(3.34)0.1521(4.44) = 12.678
 and by Eqn. S7.28 (note the signs) 

= 12.678)[–3.998 ]/16 = [–3.1679  0.1205] 
= [1.67 2.22] + [–3.1679  0.1205]  =  [–1.498 2.34],
 = [1.67 2.22] + [–3.1679  0.1205] = [1.498 2.34]. From this point, the procedure for the next collision

is exactly the same.

v12
r12

r12
c r12

c

v
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Let us perform another example with three particles and relax the constraint of net velocity. The 
interchange of subscripts for relative vectors is acceptable when applied consistently.

In retrospect, a major oversimplification of this problem deserves comment. By restricting the system to two
particles, it is necessary that the components of velocity be equal and opposite in sign. Otherwise, the system
itself would have a net velocity. You should not mistake this equality of speeds as a general result. If there
were three particles, for example, the velocities would sum to zero, but the individual magnitudes could vary
quite substantially.

Example S7.2  Computing molecular collisions in 2D

Let the diameters of three disks, , be 4 Å, masses be 16 g/mole, and the length of the square box, L, be 50 Å.
Start the disks at [0.33L 0.33L], [0.67L 0.33L], [0.67L 0.67L] and initial velocities (Å/ps) of [2.22 3.33], 
[1.11 2.22], [1.11 1.11]. Note that Å and ps are convenient units to use, and that the gas constant 8.314 J/
mol-K = 8.314 kg-m2/(s2-mol-K) = 0.8314 g-(Å)2/(ps2-mol-K).
(a) Compute the temperature (K).
(b) Compute the collision times with the walls and disks. Which event occurs first?
(c) Compute the velocities vectors (m/s) after the first collision event.

Solution:

(a) From textbook Eqn. 1.22, T2D = MW<v2>/(2R); <v2> = (2.222+3.332+1.112+2.222+1.112+1.112)/3 = 
8.214 Å2/ps2, T = (16g/mol)(8.214 Å2/ps2)/(2•0.8314 g-(Å)2/(ps2-mol-K)) = 79K.

(b) The collision time with the walls depends on the wall being approached. Recall that the particle coordinate
will be within 0.5 = 2Å of the wall coordinate when a wall collision occurs. Using cardinal directions to indi-
cate walls, disk1 is approaching the north wall and west wall, The times of collision are found by rearranging
Eqn. S7.11 using the impact coordinate for each wall, 
t1

N = (48  y1
o)/v1,y = (48  16.5)/3.33 = 9.46ps, 

t1
E = (48  x1

o)/v1,x = (48  16.5)/2.22 = 14.2ps. 
Similarly disk2 and disk3 are approaching the south and west wall, 
t2

S = (2  y1
o)/v1,y = (2  16.5)/(2.22) = 6.53ps; 

t2
W = (2  x1

o)/v1,x = (2  33.5)/(1.11) = 28.4ps; 
t3

W = (2  x1
o)/v1,x = (2  33.5)/(1.11) = 28.4ps; 

t3
S = (2  y1

o)/v1,y = (2  33.5)/(1.11) = 28.4ps. 

For disk1 and disk2, the relative velocity and position are: 
 = [(1.112.22) (2.223.33)] = [3.33 5.55];  = [(33.516.5) (16.516.5)] = [17 0]; 

by Eqn. S7.15, b21 = 17(3.33)+0 = 56.61; Because b21 < 0, the particles are approaching. 
v21

2 = (3.332 + 5.552) = 41.8914; r21
2 = (172 + 02) = 289; 

the discriminant of S7.16 is D = (56.61)2  (41.8914)(28916) = 8231.7; Thus the particles will miss. 

For disk1 and disk3, 
 = [(1.112.22) (1.113.33)] = [3.33 4.44];  = [(33.516.5) (33.516.5)] = [17 17]; 

v31
2 = (3.33)2 + (4.44)2= 30.8025; r31

2 = 2(33.516.5)2 = 578; b31
c = 3.33(17) 4.44(17) = 132.09; 

D = (132.09)2  (30.8025)(57816) = 136.76. 
Then by Eqn. S7.19, t31 = ((132.0.9)136.761/2)/(30.8025) = 3.909ps. 

A similar calculation gives b32 = 18.87 > 0, so particles are not approaching. Since t31 is the smallest posi-
tive value for particle or wall collisions, it occurs first.

Example S7.1  Computing molecular collisions in 2D  (Continued)

v21 r12

v31 r31
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Appendix - Generalized Derivation of Hard Molecule Collision Events

This document will present results for velocity changes following a collision event or well cross-
ing. The prime ' will be used to denote the state after the collision. In this document, vectors are 
denoted by the overbar arrow.

The change in potential energy for an event is indicated by  = ' - , which may be positive or 
negative depending on whether the particles enter or escape from the well. Lower energy is a 
larger negative value.

Total energy is conserved upon an event between particles i and j:

(S7.31)

which may be written

(S7.32)

Defining the contact value for relative position

(S7.33)

The change in momentum for an event is proportional to the collision vector ,

(S7.34)

or

(S7.35)

Plugging Eqn. S7.35 into Eqn. S7.32,

(S7.36)

Rearranging S7.35, also leads to

(S7.37)

and

(S7.38)

(c) Computing the direction after collision requires knowing relative positions and b at collision, 
 = (17,17) + (3.33,4.44)tc. So  = [173.33•3.909 174.44•3.909] = [3.98303 0.35596]. 

Then by Eqn. S7.15, 
b31

c = 3.33(3.98303)4.44(0.35596) = 11.683, and by Eqn. S7.28 (note the signs and subscripts) 
= [3.98303(11.683)/16 0.35596(11.683)/16] = [2.91 260] 

= [1.11 1.11] + [2.91  0.26] = [1.80 1.37], .

Example S7.2  Computing molecular collisions in 2D

r31
c r31

v
3 r– 31b31

c  2 v1–= =

v
3

v
1 2.22 3.33 2.91– 0.26+ 0.69– 3.59= =

1
2
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2
---mjvj vj + +

1
2
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2
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1
2
---mi vi vi'–  vi vi'+  1

2
---– mj vj vj'–  vj vj'+  +=

rij
c

ri
c

rj
c

–

rij
c

mi vi' vi–  m– j vj' vj–  rij
c=

vi' vi– 
mj

--------------------
vj' vj– 

mi
--------------------– rij

c
= =

rij
c

vi vi'+  rij
c

vj vj'+  2  mimj –=
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+=

vj' vj mirij
c

–=
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plugging Eqn. S7.37 and Eqn. S7.38 into Eqn. S7.35 to eliminate the primed variables in Eqn. 
S7.32,

(S7.39)

Recognizing , which is the distance when the event occurs.

(S7.40)

Defining , and ,

(S7.41)

Applying the quadratic formula,

(S7.42)

recognizing the reduced mass, , and factoring constants,

(S7.43)

where the sign of s depends on the context of the event. The discriminant must be non-negative 

for physical events, D = . For an event where  = 0, then s = 1 is the 

only reasonable solution. For collision of repulsive cores, the event distance is the interparticle 
radius, dij = ij and the relation becomes

(S7.44)

Other cases are discussed elsewhere. In all cases the velocity changes are calculating using the 
either Eqn. S7.43 or S7.44 along with S7.35.

Compressibility Factor

The compressibility factor for a hard molecule system is calucalated using the virial theorem.

(S7.45)

where ts is a long sample time. Because the forces are impulses, the magnitude of the forces can 
be obtained from the change in momentum at each event. The change in momentum for particle i 
will be

(S7.46)

When the simulation involves only core collisions without wells, the resulting formula is

rij
c

2vi mjrij
c
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(S7.47)

When wells are present in the simulation, Eqn. S7.45-6 must be used.

Z Nm
2

3tsNkT
------------------ bij

c
mr

samples over time ts

–=


