(P5.1) $\mathrm{COP}=$ coef. of performance $=\frac{\underline{Q}_{C}}{W_{S, \text { net }}}$
Using state numbers of Fig 5.8-5.9. P-H plot will look like Fig 5.9. Use P-H chart and table from Appendix E. Saturated values are from the table:
state 2 is satV at $-40 \mathrm{C} \rightarrow \mathrm{H}_{2}=372 \mathrm{~kJ} / \mathrm{kg}$ (chart)
state 3 , outlet of the reversible compressor is found by following the isentropic line to 40 C , where $\mathrm{H}_{3}{ }^{\prime}=438 \mathrm{~kJ} / \mathrm{kg}$.
state 4 is satL at $\mathrm{H}_{4}=256 \mathrm{~kJ} / \mathrm{kg}$ (table)
state $1, \mathrm{H}_{1}=\mathrm{H}_{4}$
$Q_{C}=\left(H_{2}-H_{1}\right)=372-256=116 \mathrm{~kJ} / \mathrm{kg}$
$\mathrm{W}_{\mathrm{S}}=\left(H_{3}-H_{2}\right)=438-372=66 \mathrm{~kJ} / \mathrm{kg}$
$\Rightarrow C O P=\frac{\dot{\underline{Q}}_{C}}{\underline{\dot{W}}_{S}}=\frac{116}{66}=1.76$
$\underline{Q}_{C}=\operatorname{COP}\left(\mathrm{W}_{\mathrm{S}}\right)=1.76(9000 \mathrm{~J} /$ day $)=16 \mathrm{~kJ} /$ day
(P5.2) Methane,. See Fig 5.8-5.9. Methane chart Appendix E.
$T_{\text {evap }}=-280^{\circ} F, P=0.032 \mathrm{MPa}$
$\Rightarrow H_{2}^{\text {sat } V}=339 \mathrm{Btu} / \mathrm{lbm}$
$S_{2}^{s a t V}=2.35 \mathrm{Btu} / \mathrm{lb} .{ }^{\circ} \mathrm{F}$
Pressure of 3' isn't given, however, it will be the same as the condenser outlet $\left(\mathrm{P}_{4}\right)$ since the condenser will be considered to be isobaric. State 4 will be satL at 40 F , so $\mathrm{P} 4=\mathrm{P} 3{ }^{\prime}=$ 2 MPa . Follow isentropic line from the compressor inlet state to 2 MPa . At P3' $=2 \mathrm{MPa}$, and $\mathrm{S3}^{\prime}=2.35 \mathrm{Btu} / \mathrm{lb}_{\mathrm{m}} \mathrm{F}, \mathrm{H} 3^{\prime}=485 \mathrm{Btu} / \mathrm{lbm}$, and $\mathrm{T}^{\prime}=40 \mathrm{~F}$. At the outlet of the condenser, the fluid will be saturated liquid at 2 MPa ,
$T_{4}=-160^{\circ} F, P_{4}=2 \mathrm{MPa}$
$\Rightarrow H_{4}^{\text {satL }}=218 \mathrm{Btu} / \mathrm{lbm}$
$S_{4}^{\text {sat } l_{l q}} 1.54 B t u / l b .{ }^{\circ} F$

State	T(${ }^{\circ} \mathrm{F}$)	P (MPa)	H(Btu/lb)	$\mathrm{S}\left(\right.$ Btu/lb*$\left.{ }^{\text {º}} \mathrm{F}\right)$
	-280	0.032	218	
2 Sat'd vap	-280	0.032	339	2.35
3^{\prime}	40	2	485	2.35
4	-160	2	218	1.5

$C O P=\frac{H_{2}-H_{1}}{H_{3}^{\prime}-H_{2}}=\frac{Q_{C}}{W_{S, \text { net }}}=\frac{H_{2}-H_{4}}{H_{3}^{\prime}-H_{2}}=\frac{339-218}{485-339}$
$\Rightarrow C O P=0.83$
(P5.3) Rankine Cycle, Fig 5.2
temperatures $200^{\circ} C \& 99.6^{\circ} C$, Sat vapor from Turbine outlet can be found in the Sat Pressure table Appendix E.

To accompany Introductory Chemical Engineering Thermodynamics © J.R. Elliott, C.T. Lira, 2001-2014, all rights reserved. (12/4/2014)

The turbine is assumed to be adiabatic and reversible since no other specifications are given. The inlet state will then have the same entropy as the outlet. Since the boiler/superheater outlet is to operate at $\mathrm{T}_{3}=200 \mathrm{C}$, and $\mathrm{S}_{3}=7.3592$, we must hunt in the superheated tables to find this combination. This will occur between 0.2 and 0.3 MPa . Interpolating, the value of H can be found. Values are tabulated below:

State	T $^{\mathbf{O}} \mathbf{C}$	$\mathbf{P (M P a)}$	$\mathbf{H}(\mathbf{k J / k g})$	$\mathbf{S (k J / k g * K})$	$\mathbf{V}(\mathbf{m 3 / k g})$
4' sat vap	99.6	0.098	2675	7.359	
5 sat liq.	99.6	0.098	417	1.3028	0.001043
3	200	0.271	2867	7.3592	
6			417.18		

$$
\begin{aligned}
& W_{S, \text { turbine }}^{\prime}=\left(H_{4}^{\prime}-H_{3}\right)=2675-2867=-192 \mathrm{~kJ} / \mathrm{kg} \\
& \Delta H_{\text {pump }}=W_{S, \text { pump }}=\int V d P=V \Delta P \\
& \Rightarrow \Delta H_{\text {pump }}=\frac{1043 \mathrm{~cm}^{3} *(0.271-0.098)}{\mathrm{kg}} * \frac{1 \mathrm{~J}}{\mathrm{~cm}^{3} * M P a} * \frac{\mathrm{~kJ}}{10^{3} \mathrm{~J}} \\
& \Rightarrow \Delta H_{\text {pump }}=0.180 \mathrm{~kJ} / \mathrm{kg} . \\
& \Rightarrow W_{S, \text { net }}^{\prime}=-192+0.180=-191.82 \mathrm{~kJ} / \mathrm{kg} \\
& \& \eta=\frac{-W_{S, \text { net }}^{\prime}}{Q_{\text {boiler }}}=\frac{-(-191.82)}{\left(H_{3}-H_{6}\right)}=\frac{-(-191.82)}{\left(2867-H_{6}\right)} \\
& \Rightarrow H_{6}=417+0.18=417.18 \mathrm{~kJ} / \mathrm{kg} \\
& \Rightarrow \eta=\frac{-(-191.82)}{(2867-417.18)}=0.0783 \\
& \Rightarrow \eta=7.83 \%
\end{aligned}
$$

(P5.6) Inlet: $300 \mathrm{psia} / 14.504=20.68 \mathrm{bar} ;\left(550{ }^{\circ} \mathrm{F}+460\right) / 1.8-273.15=288^{\circ} \mathrm{C}=561.15 \mathrm{~K}$ Steam.xls $=>$ H1 $=2993.9 ;$ S1 $=6.7004$
Outlet: $\mathrm{S} 2=1.3072+0.95(7.3541-1.3072)=7.053 ; \mathrm{H} 2=419.17+0.95 * 2256.4=2562.8$
$\mathrm{W}=2562.8-2993.9=-431.1$
$\mathrm{S}^{\prime}{ }^{\prime}=\mathrm{S} 1=>\mathrm{q}^{\prime}=(6.7004-1.3072) /(7.3541-1.3072)=0.8919$
$\mathrm{H}^{\prime}{ }^{\prime}=419.17+0.8919^{*} 2256.4=2431.7=>\mathrm{W}^{\prime}=2431.7-2993.9=-562.2$
$\Rightarrow \eta_{E}=431.1 / 562.2=76.7 \%$
(b) Base Rankine cycle on actual turbine $=>\mathrm{Wp}=1.9 \mathrm{~J} / \mathrm{g} ; \mathrm{QH}=2993.9-(419.17+1.9)=2572.8$ $\eta \theta=(431.1-1.9) / 2572.8=16.7 \%$

