(P7.2) $P_{r}=30, T_{r}=15$
(a) Use virial equation of state.
$Z=1+\left(B^{0}+\omega B^{1}\right) P_{r} / T_{r}$

$$
\begin{equation*}
B^{0}=0.083-\frac{0.422}{T_{r}^{1.6}} \tag{Eqn. 7.6}
\end{equation*}
$$

Where,

$$
B^{1}=0.139-\frac{0.172}{T_{r}^{4.2}}
$$

$\Rightarrow B^{0}=0.077459277$
$\& B^{1}=0.138998$
$\& \omega=-0.041$ (book)
$\Rightarrow Z=1+(0.077459277-0.041 * 0.138998) * \frac{30}{15}=1.14$
(b) $\rho=$??
$T=T_{r} * T_{C}=15 * 44.4=666 \mathrm{~K}$
$P=P_{r} * P_{C}=2.653 * 30=79.59 \mathrm{MPa}$
$Z=\frac{P V}{R T}, \Rightarrow V=\frac{Z * R * T}{P * M W}=\frac{1.14 * 8.314 * 666}{79.59 * 20.179}=3.93 \mathrm{~cm}^{3} / \mathrm{g}$
$\Rightarrow \rho=\frac{1}{V}=\frac{1}{3.93}=0.254 \mathrm{~g} / \mathrm{cm}^{3}$
(P7.4)
$T_{1}=111 K$
$P_{1}=1 a t m \approx 0.1 M P a$
$T_{2}=77^{\circ} \mathrm{F}=25^{\circ} \mathrm{C}=298.15 \mathrm{~K}$
Use PREOS.XLS, \Rightarrow

Use Solver, and set target cell on the volume and make it equal to 33.639114*2 = 67.278228,

Then by changing the cell of pressure, making sure that $\mathrm{T}_{2}=298.15 \mathrm{~K}$

Current State		Roots	
$\mathrm{T}(\mathrm{K})$	298.15	Z	V
$\mathrm{P}(\mathrm{MPa})$	33.839895		$\mathrm{~cm}^{3} / \mathrm{gmol}$

To accompany Introductory Chemical Engineering Thermodynamics © J.R. Elliott, C.T. Lira, 2001-2014, all rights reserved. (11/27/2014)

Chapter 7 Practice Problems

answers for three root region	\#NUM! \#NUM! \#NUM!	\#NUM! \#NUM! \#NUM!
\& for 1 root region	0.9184568	$\mathbf{6 7 . 2 7 8 2 2 8}$

$\Rightarrow P_{2}=33.84 M P a$
(P7.5) if the pressure change, implies the volume will change, but we have to keep in mind that the number of moles stay the same.
So, by using PREOS.XLS for $20^{\circ} \mathrm{C} \& 1$ bar $\Rightarrow V=24302.829 \mathrm{~cm}^{3} / \mathrm{gmol}$

Current State		Roots	
T (K)	293.15	Z	V
P (MPa)	0.1		$\mathrm{cm}^{3} / \mathrm{gmol}$
	answers for three root region	\#NUM!	\#NUM!
		\#NUM!	\#NUM!
		\#NUM!	\#NUM!
	\& for 1 root region	0.9976523	24302.829

$\Rightarrow V=0.0243 \mathrm{~m}^{3} / 1 \mathrm{~mole}$
$\therefore \underline{V}=4 m^{3} \Rightarrow n=\frac{4 m^{3}}{0.0243 \mathrm{~m}^{3} / \mathrm{mole}}=164.61 \mathrm{moles}$
For $\mathrm{T}=293.15 \mathrm{~K}$ and $\mathrm{P}=200$ bars $\Rightarrow V=9.68 E-5 \mathrm{~m}^{3} /$ mole

$\Rightarrow \underline{V}=n * V=164.61$ moles $* 9.68 E-5 m^{3} /$ mole $=0.01593 m^{3}$
$\Rightarrow \underline{V}=15.93 L$
(P7.6)

Current State		Roots		
$\mathrm{T}(\mathrm{K})$	311.15	Z	V	fugacity
$\mathrm{P}(\mathrm{MPa})$	10		$\mathrm{~cm}^{3} / \mathrm{gmol}$	MPa
answers for three		\#NUM!	\#NUM!	\#NUM!

To accompany Introductory Chemical Engineering Thermodynamics © J.R. Elliott, C.T. Lira, 2001-2014, all rights reserved. (11/27/2014)

Chapter 7 Practice Problems

root region	\#NUM! \#NUM!	\#NUM! \#NUM!	\#NUM!
\& for 1 root region	0.282507981	73.08617	5.546459

$$
\begin{aligned}
& V=73.1 E-6 \mathrm{~m}^{3} / \mathrm{mole} \\
& \Rightarrow n=\frac{0.15 \mathrm{~m}^{3}}{73.1 E-6 \mathrm{~m}^{3} / \mathrm{mole}}=2051.98 \mathrm{moles}
\end{aligned}
$$

The molar volume will stay constant as the gas is cooled. Some checking shows that at 273.15 the saturated liquid volume is $48.2 \mathrm{~cm} 3 / \mathrm{mol}$, thus the system is 2 phase. The shortcut equation can be used to estimate the vapor pressure, but the EOS needs to be used to calculate the molar volumes. Using goal seek...

Current State	Roots	
$\mathrm{T}(\mathrm{K}) \quad 273.15$	Z	V
P		
(MPa)	3.465769	
$\mathrm{~cm}^{3} / \mathrm{gmol}$		
answers for three		0.69011426
root region	0.195655461	128.2278
	0.073553994	48.1995

The container must be filled with compressed liquid at this temperature to reach 10 MPa .

Current State		Roots	
$\mathrm{T}(\mathrm{K})$	273.15	Z	V
$\mathrm{P}(\mathrm{MPa})$	10		$\mathrm{~cm}^{3} / \mathrm{gmol}$
\& for 1 root region		0.196286053	44.57849

Now, the molar volume stays constant when the vessel is heated. Use solver to find the pressure that gives the same molar volume.

Current State	Roots		
$\begin{array}{ll}\text { T (K) } & 311.15\end{array}$	Z	V	fugacity
$\mathrm{P}(\mathrm{MPa}) 34.02393$		$\mathrm{cm}^{3} / \mathrm{gmol}$	MPa
\& for 1 root region	0.599451881	45.58	9.053131

