(P17.1) An equimolar mixture of H 2 and CO can be obtained by the reaction of steam with coal. Compute the equilibrium compositions at 550 C based on an equimolar feed of $\mathrm{H} 2, \mathrm{CO}$, and H 2 O . The reaction is $\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}=\mathrm{H}_{2}+\mathrm{CO}_{2} . \Delta G_{f}{ }^{\circ}$ data at 550 C are given.
$\Delta G_{T}=\Sigma \Delta G_{f}($ product $)-\Sigma \Delta G_{f}($ reactant $)=-8.84 \mathrm{~kJ} / \mathrm{mol}$
$K a\left(550{ }^{\circ} \mathrm{C}\right)=\exp (8840 /(8.314 *(550+273.15))=3.369$

Compound	In	Out
H 2 O	0.333	$0.333-\xi$
CO	0.333	$0.333-\xi$
H 2	0.333	$0.333+\xi$
CO 2	0	ξ
Total	1	1

$K a=\frac{(\xi)(0.333+\xi) * P^{2}}{(0.333-\xi) *(0.333-\xi) * P^{2}}=3.369$
$\xi=0.176 ;$ Ans. $y_{1}=0.157, y_{2}=0.157, y_{3}=0.509, y_{4}=0.176$
(P17.2) One method for the production of hydrogen cyanide is by the gas-phase nitrogenation of acetylene according to the reaction below. For a stoichiometric feed at $300^{\circ} \mathrm{C}$, calculate the product composition at 1 and 200 bar given $\Delta G_{T}{ }^{\circ}=30.08 \mathrm{~kJ} / \mathrm{mole}$.

$$
\mathrm{N}_{2}+\mathrm{C}_{2} \mathrm{H}_{2}=2 \mathrm{HCN}
$$

Solution: Two mole basis. Assume ideal gas.
$\#$ of moles $\left(\mathrm{N}_{2}\right)=\#$ of moles $\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)=1.0$

Compound	In	Out
N2	1	$1-\xi$
C2H2	1	$1-\xi$
HCN	0	2ξ
Total	2	2

$K a=\exp (-30080 /(8.314 *(300+273.15))=0.0018$
$K a=\frac{(2 * \xi)^{2} * P^{2}}{(1-\xi)^{2} * P^{2}}=0.0018, \quad \xi=0.0208$
(Ans. $y_{1}=0.4896, y_{2}=0.4896, y_{3}=0.0416$)
(P.14.3) Butadiene can be prepared by the gas-phase catalytic dehydrogenation of 1-Butene: $\mathrm{C} 4 \mathrm{H} 8=\mathrm{C} 4 \mathrm{H} 6+\mathrm{H} 2$. In order to suppress side reactions, the butene is diluted with steam before it passes into the reactor.
(a) Estimate the temperature at which the reactor must be operated in order to convert 30% of the 1-butene to 1,3 -butadiene at a reactor pressure of 2 bar from a feed consisting of 12 mol of steam per mole of 1-butene.
(b) If the initial mixture consists of $50 \mathrm{~mol} \%$ steam and $50 \mathrm{~mol} \%$ 1-butene, how will the required temperature be affected?

$\Delta G_{f}{ }^{\circ}$	600 K	700 K	800 K	900 K
C 4 H 6	195.73	211.71	227.94	244.35
C 4 H 8	150.92	178.78	206.89	235.35

Solution:

Compound	In	Out
C4H8	1	$1-\xi$
C4H6	0	ξ
H2	0	ξ
H2O	12	12
Total	13	$13+\xi$

$P=2$ bar
$K a=\frac{\left(\frac{\xi}{13+\xi}\right)^{2} * P^{2}}{\left(\frac{1-\xi}{13+\xi}\right) P}=\frac{\xi^{2} * P}{(13+\xi) *(1-\xi)}$
$K a=0.01933$
Noting that $\ln K a=-\Delta G_{\text {tot }} / R T$, we can identify the temperature by fitting a trendline to the given data.
$\Rightarrow \ln 0.01933=-3.95$,
substitute in the equation of straight line,
$\Rightarrow \quad x=-(-14.34-3.95) / 13996$.
$\Rightarrow x=0.001306=1 / T$,
$\Rightarrow T=765.22 \mathrm{~K}=492^{\circ} \mathrm{C}$

Compound	In	Out
C4H8	1	$1-\xi$
C4H6	0	ξ
H 2	0	ξ
H 2 O	1	1
Total	2	$2+\xi$

$$
\begin{aligned}
& K a=\frac{\xi^{2} * P}{(2+\xi) *(1-\xi)}=0.1118 \\
& \text { Similarly, } T=846.65 \mathrm{~K}=573.6^{\circ} \mathrm{C} \\
& \quad \Rightarrow \text { We need higher } T .
\end{aligned}
$$

(P17.4) The standard Gibbs energy change for ethylene oxide at 298 K for the reaction is -79.79 $\mathrm{kJ} / \mathrm{mole}$. This large negative value of $\Delta G_{T}{ }^{\circ}$ indicates that equilibrium is far to the right at 298 K but what about 550 K ? Heat capacity expressions are given as $C_{P}=a+b T$.
Solution: The heat of reaction must be looked up. Referring to Apx E. 6 for ethylene and the DIPPR handbook for ethylene oxide, $\Delta H_{298}{ }^{\circ}=-52.6-52.51=-105.1 \mathrm{~kJ} / \mathrm{mol}$. Following Eqs. 14.28 and 14.30 ,
$-105100=J+(6.57-15.4-26.65 / 2) 298+(0.1389-0.0937-0.00845 / 2) 298^{2} / 2$
$-105100=J-22.155 * 298+0.040975 * 298^{2} / 2 \Rightarrow J=-100317 \mathrm{~J} / \mathrm{mol}$
$-79790 /(8.314 * 298)=-100317 /(8.314 * 298)-$
$\frac{-79790}{8.314 * 298}=\frac{-100317}{8.314 * 298}-\frac{-22.155}{8.314} \ln 298-\frac{0.040975}{2 * 8.314} 298+I=>I=-6.16$
$\frac{\Delta G^{\circ}}{8.314 * 550}=\frac{-100317}{8.314 * 550}-\frac{-22.155}{8.314} \ln 550-\frac{0.040975}{2 * 8.314} 550+6.16=12.6$
$\Rightarrow \Delta G^{\circ}=-57.7 \mathrm{~kJ} / \mathrm{mol}$. If $T=550 \mathrm{~K}$, increasing T will give an adverse effect on equilibrium, but the reaction is still very strongly favored and the impact will be indistinguishable.
(P14.5) The "water gas" shift is to be carried out at a specified temperature and pressure employing a feed containing only CO and H 2 O . Show that the maximum equilibrium mole fraction of H 2 in the product results when the feed contains CO and H 2 O in their stoichiometric proportions. Assume ideal gas behavior.
Solution: $\mathrm{CO}+\mathrm{H}_{2} \mathrm{O}=\mathrm{CO}_{2}+\mathrm{H}_{2}$

Compound	In	Out	$K a=\frac{\xi^{2}}{(z-\xi)(1-\xi)}$
CO	z	$z-\xi$	
H 2 O	1	$1-\xi$	
CO 2	0	ξ	$\xi^{2}-K a(z-\xi)(1-\xi)=0$
H 2	0	ξ	$0=\xi^{2}-K a\left[z-(1+z) \xi+\xi^{2}\right]$
Total	$1+\mathrm{z}$	$1+\mathrm{z}$	
$\xi^{2}(1-K a)+K a(1+z) \xi-K a z=0 \Rightarrow \xi=\left\{-K a(1+z)+\left[K a^{2}(1+z)^{2}+4 z(1-K a) K a\right]^{1 / 2}\right\} /[2(1-K a)]$			
$y_{\mathrm{H} 2}=\xi /(1+\mathrm{z})=\left\{-K a(1+z)+\left[K a^{2}(1+z)^{2}+4 z(1-K a) K a\right]^{1 / 2}\right\} /[2(1+z)(1-K a)]$			

$y_{\mathrm{H} 2}=\xi /(1+\mathrm{z})=\left\{-K a+\left[K a^{2}+4 z(1-K a) K a /(1+\mathrm{z})^{2}\right]^{1 / 2}\right\} /[2(1-K a)]$

To find maximum, take derivative and set equal to zero.
$d y / d z=0.5\left[K a^{2}+4 z(1-K a) K a /(1+z)^{2}\right]^{-1 / 2}\left[4(1-K a) K a /(1+z)^{2}-8 z(1-K a) K a /(1+z)^{3}\right]=0$
$1=2 z /(1+z) \Rightarrow z=1$. QED.
(P17.6) Assuming ideal gas behavior, estimate the equilibrium composition at 400 K and 1 bar of a reactive mixture containing the three isomers of pentane. Formation data are given at 400 K . Solution: This is best solved by the Gibbs minimization method, adapting Example 17.13 and GibbsMin from the Rxns.xls workbook, we obtain the following.

	Gf(J/mole)	Gf400/RT	feed	ni	$\log (\mathrm{ni})$	yi_{i}	$\mathrm{ni}\left(\mathrm{Gi} / \mathrm{RT}+\ln \mathrm{y}_{\mathrm{i}}\right)$
nPentane	40170	12.08	0	0.111	-0.95	0.111	1.100
iPentane	34310	10.32	1	0.648	-0.19	0.648	6.408
neoPentane	37610	11.31	0	0.240	-0.62	0.240	2.376
Tot			1	1.000			9.884
	Out	In					
C-bal	5	5					
Hbal	12	12					

(P17.7) One method for the manufacture of synthesis gas depends on the vapor-phase catalytic reaction of methane with steam according to the equation below. The water-gas shift reaction also is important. Bases on stoichiometric feed of methane and steam, compute the eq composition at $600 \mathrm{~K}, 1300 \mathrm{~K}$ and 1,100 bars.
$\mathrm{CH}_{4}+\mathrm{H}_{2} \mathrm{O}=\mathrm{CO}+3 \mathrm{H}_{2}$
$\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}=\mathrm{H}_{2}+\mathrm{CO}_{2}$

Compound	In	Out
CH 4	1	$1-\xi 1$
H 2 O	1	$1-\xi 1-\xi 2$
CO	0	$\xi 1-\xi 2$
H 2	0	$3 \xi 1+\xi 2$
CO 2	0	$\xi 2$
Total	2	$2+2 \xi 1$

rxn(1)
rxn(2)

$$
\Delta G_{600 K}=-164.68+214.01+22.97=72.3 \mathrm{~kJ} / \text { mole. } .
$$

\qquad .$r x n(1)$

$$
\Delta G_{600 K}=-395.14+214.01+164.68=-16.45 \mathrm{~kJ} / \text { mole } .
$$

\qquad .$r x n(2)$
$K a_{600 K, 1}=\exp \left(\frac{-72300 \mathrm{~J} / \mathrm{mole}}{8.314 * 600}\right)=5.08 E-7$
$K a_{600 K, 2}=\exp \left(\frac{16450}{8.314 * 600}\right)=27.05$

$$
\begin{aligned}
K a_{1}= & \frac{\left(\xi_{1}-\xi_{2}\right)\left(3 \xi_{1}+\xi_{2}\right)^{3} * P^{4} /\left(2+2 \xi_{1}\right)^{4}}{\left(1-\xi_{1}\right)\left(1-\xi_{1}-\xi_{2}\right)^{*} P^{2} /\left(2+2 \xi_{1}\right)^{2}} \\
& =\frac{\left(\xi_{1}-\xi_{2}\right)\left(3 \xi_{1}+\xi_{2}\right)^{3} * P^{2}}{\left(1-\xi_{1}\right)\left(1-\xi_{1}-\xi_{2}\right)\left(2+2 \xi_{1}\right)^{2}} \\
K a_{2} & =\frac{\xi_{2}\left(\xi_{1}+\xi_{2}\right) * P^{2} / 4}{\left(1-\xi_{1}\right)\left(\xi_{1}-\xi_{2}\right) * P^{2} / 4}=\frac{\xi_{2}\left(\xi_{1}+\xi_{2}\right)}{\left(1-\xi_{1}\right)\left(\xi_{1}-\xi_{2}\right)}
\end{aligned}
$$

Note: high pressure tends to disfavor rxn (1). Rxn 1 is negligible at 600 K , and rxn (2) requires CO to run or $\xi_{1}-\xi_{2}$ will be less than zero. So both reactions are zero. At 1300 K , the situation is quite different.
$\Delta G_{1300 K}=-226.94+175.81-53.30=-104.73$
$\Rightarrow K a_{1}=16113$
$\Delta G_{1300 K}=-396.14+226.94+175.81=6.614$
$\Rightarrow K a_{2}=0.54$
Solving by method of Example 14.9, $\xi_{1}=0.972$ and $\xi_{2}=0.015$ at 1 bar. At $100 \mathrm{bar}, \xi_{1}=0.451$ and $\xi_{2}=0.149$ at 100 bar

P17.7
Two simultaneous reactions:
$\mathrm{CH} 4+\mathrm{H} 2 \mathrm{O}=\mathrm{CO}+3 \mathrm{H} 2$
$\mathrm{H} 2+\mathrm{CO} 2=\mathrm{CO}+\mathrm{H} 2 \mathrm{O}$
(Details of equations described in text)

P (bars)	100
$\mathrm{~T}(\mathrm{~K})$	1300

$T(K)$	1300
$\mathbf{K}_{\mathrm{a} 1}$	16113
$\mathbf{K}_{\mathrm{a} 2}$	0.5400
$\boldsymbol{\xi}_{1}$	0.4513
$\boldsymbol{\xi}_{2}$	0.1491
$\mathbf{y}_{\mathbf{1}}$	0.1891
$\mathbf{y}_{\mathbf{2}}$	0.1377
$\mathbf{y}_{\mathbf{3}}$	0.1041
\mathbf{y}_{4}	0.5178
\mathbf{y}_{5}	0.0514
$\mathbf{n T o t}$	2.9025
Objective Functions	0.0000
err1	0.0000
err2	

(P17.8) Is there any danger that solid carbon will form at $550^{\circ} \mathrm{C}$ and 1 bar by the reaction:
$2 \mathrm{CO}=\mathrm{C}_{\mathrm{s}}+\mathrm{CO}_{2}$

	$\Delta H_{298 \mathrm{~K}} \mathrm{~kJ} /$ mole	$\Delta G_{298 K} \mathrm{~kJ} /$ mole	IN	Out
CO	-110.53	-137.16	2	$2-2 \xi$
C_{s}	0	0	0	0 (gas)
CO2	-393.51	-394.38	0	ξ
Tot				$2-\xi$

$\Delta G_{298 K, T}=-394.38+2 * 137.16=-120.06 \mathrm{~kJ} /$ mole
$\Delta H_{298 к, T}=-393.51+2 * 110.53=-172.45 \mathrm{~kJ} / \mathrm{mole}$
Increasing T, adverse affect on equilibrium
$K a_{298 K}=\exp \left[\frac{-\Delta G_{298 K}}{R T}\right]=\exp \left(\frac{120060}{8.314 * 298.15}\right)=1.08 E 21$
Using Shortcut Van’t Hoff Eq. 14.31
$\Rightarrow \ln \left(\frac{K a}{K a_{298}}\right)=\frac{-\Delta H_{298}}{R}\left(\frac{1}{T}-\frac{1}{T_{298}}\right)=\ln \left(\frac{K a}{1.08 E 21}\right)=\frac{172450}{8.314}\left(\frac{1}{823.15}-\frac{1}{298.15}\right)$
$\Rightarrow \ln K a=\ln (1.08 E 21)-44.4=4.06 \Rightarrow K a=\exp (4.06)=57.99$
$\Rightarrow K a=\frac{y_{\mathrm{CO}_{2}} * P}{\left(y_{C O} * P\right)^{2}}=\frac{(\xi /(2-\xi))}{((2-2 \xi) /(2-\xi))^{2}}=57.99=\frac{\xi^{*}(2-\xi)}{(2-2 \xi)^{2}}$
$\xi=0.9345 \Rightarrow$ ratio of carbon solid to feed is $\frac{0.9345}{2}=0.46725 . \Rightarrow$ There is danger.
Note: this exemplifies a very important and undesirable side reaction in many catalytic reactions know as "coking." The carbon tends to clog the catalyst pores and substantially reduce its effectiveness. Because of this problem, fluidized catalytic crackers were developed (aka. Cat crackers). The solid catalyst particles are fluidized by the upflow of gaseous reactants. As they ultimately settle at the bottom, they are removed and recirculated through an oxidation zone that burns off the coke then recycles the catalyst to the top of the bed. This is a good example of how thermodynamics impacts reactor design.
(P17.9) Calculate the equilibrium percent conversion of ethylene oxide to ethylene glycol at 298 K and 1 bar if the initial molar ratio of ethylene oxide to water is 3 .

	In	$\operatorname{Out}\left(z_{i}\right)$
EtO	3	$3-\xi$
Water	1	$(1-\xi)$
Glycol	0	ξ
Tot		$4-\xi$

$K_{w}=P^{\text {sat }} / P=0.0425 ; K_{E t O}=1.76 ; K_{G l y}=8.6 \mathrm{E}-4 ; y_{i}=z_{i} K_{i} /\left[K_{i}+L / F^{*}\left(1-K_{i}\right)\right]$
$K a=\frac{y_{G l y} P}{y_{E t O} * y_{W} * P^{2}}=\exp \left(\frac{7824}{298.15 * 8.314}\right)=23.52$ and $\Sigma y_{i}=1$ are constraints, ξ and L / F are
unknown. Guess, $\xi=0.99, L / F=1 / 3$ (all glycol in liquid, all EtO in vapor).

To accompany Introductory Chemical Engineering Thermodynamics ©J.R. Elliott, C.T. Lira, 2001-2014, all rights reserved. (11/27/14)

As it turns out, the ethylene oxide is not so volatile after all and dissolves a fair amount in the liquid. The guess about the extent of conversion being high was good though. A more clever engineering approach would be to assume complete conversion and solve the simple flash. Then back out the exact conversion assuming L / F does not change.
(P17.10) Acetic acid vapor dimerizes according to $2 \mathrm{~A} 1=\mathrm{A} 2$. Assume that no higher-order associations occur. Supposing that a value for $K a$ is available, and that the monomers and dimers behave as an ideal gas, derive an expression for $y_{A 1}$ in terms of P and $K a$. Then develop an expression for $P \underline{V} / n_{0} R T$ in terms of $y_{A 1}$, where n 0 is the superficial number of moles neglecting dimerization. Hint: write n_{0} / n_{T} in terms of $y_{A 1}$ where $n_{T}=n_{1}+n_{2}$.
Solution:
$\frac{n_{0}}{n_{T}}=\frac{n_{1}+2 n_{2}}{n_{T}}=y_{A 1}+2\left(1-y_{A 1}\right)=2-y_{A 1}$
$\frac{y_{A 2}}{y_{A 1}^{2} P}=K a \Rightarrow 1-y_{A 1}=y_{A 1}^{2} P K a \Rightarrow y_{A 1}=\frac{-1+\sqrt{1+4 P K a}}{2 P K a}$
Ideal gas $\Rightarrow \frac{P \underline{V}}{n_{T} R T}=1 \Rightarrow \frac{P \underline{V}}{n_{0} R T}=\frac{n_{T}}{n_{0}}=\frac{1}{2-y_{A 1}}$
Note: as $K a \rightarrow \infty, P \underline{V} / n_{0} R T \rightarrow 1 / 2$ because the monomer is converted to dimer. Note also that $P \underline{V} / n_{0} R T$ is what we normally refer to as the compressibility factor, Z. This is an interesting result with regard to equations of state and phase equilibria. Since $K a$ is simply a function of temperature $[$ ie. $\exp (-\Delta G / R T)]$, it says that we can compute Z given a pressure and temperature. This is analogous to the pressure explicit virial equation (Section 7.4), but the form of the pressure dependence is more complex. Exploring this perspective, generalizing to densitydependent equations, and adapting to multimer-forming species and mixtures is the subject of Chapter 19. Most of the physical insight contained in Chapter 19 is contained in this simple practice problem.

