08.01 - The Departure Function Pathway
Book navigation
- Chapter 1 - Basic concepts
- Chapter 2 - The energy balance
- Chapter 3 - Energy balances for composite systems.
- Chapter 4 - Entropy
- Chapter 5 - Thermodynamics of Processes
- Chapter 6 - Classical Thermodynamics - Generalization to any Fluid
- Chapter 7 - Engineering Equations of State for PVT Properties
-
Chapter 8 - Departure functions
- 08.01 - The Departure Function Pathway
- 08.02 - The Internal Energy Departure Function
- 08.03 - The Entropy Departure Function
- 08.04 - Other Departure Functions
- 08.05 - Summary of Density Dependent Formulas
- 08.06 - Pressure Dependent Formulas
- 08.07 - Implementation of Departure Functions
- 08.08 - Reference States
- Chapter 9 - Phase Equlibrium in a Pure Fluid
- Chapter 10 - Introduction to Multicomponent Systems
- Chapter 11 - An Introduction to Activity Models
- Chapter 12 - Van der Waals Activity Models
- Chapter 13 - Local Composition Activity Models
- Chapter 14 - Liquid-liquid and solid-liquid equilibria
- Chapter 16 - Advanced Phase Diagrams
- Chapter 15 - Phase Equilibria in Mixtures by an Equation of State
- Chapter 17 - Reaction Equilibria
- Chapter 18 - Electrolyte Solutions
Departure Function Overview (
Departure Function Overview (11:22) (msu.edu)
The philosophy and overall approach for using departure functions.
Demystifying The Departure Function
Demystifying The Departure Function (11min) (uakron.edu)
...a peek inside the magician's hat. The connection from the real fluid to the ideal gas is not really magic. You can look at it as transforming the interaction potential (ie. u(r)) from 0 (ideal gas) to a Lennard-Jones model (real fluid). Alternatively, you can view it as the difference between the real fluid and ideal gas at each density, summed from zero density (where both exhibit ideal gas behavior) to the density of interest. This latter approach is most convenient and makes good use of our new expertise in derivative manipulations and equations of state.
Comprehension Questions:
1. In the diagram of (A-Ac)/RTc, which state represents the closest point to an ideal gas: A, B, C, or D?
2. Write out the departure function pathway in its various steps to compute "U" = (U-URef).
3. Identify the steps in #2 above as departure function or ideal gas contributions.
4. For propane at 355K and 3MPa, (U-Uig)= -2572 J/mol. We can compute Uig(355K)-Uig(230K)=8000 J/mol. The departure function for liquid propane at 230K, 0.1MPa is (U-Uig)= -16970 J/mol. Compute the value of "U" at 355K and 3MPa relative to liquid propane at 230, and 0.1MPa using this information.
5. Compare your answer to the value given by PREOS.xlsx.
6. Compare your answer to the value given by the pathway of Figure 2.6c. (Hint: use Eqn. 2.47 to decide whether 355K,3MPa corresponds to a vapor or liquid.)