01.6 Summary

Comments

The objectives for Chapter 1 were:

1. Explain the definitions and relations between temperature, molecular kinetic energy,
molecular potential energy and macroscopic internal energy, including the role of intermolecular potential energy and how it is modeled. Explain why the ideal gas internal energy
depends only on temperature.
2. Explain the molecular origin of pressure.
3. Apply the vocabulary of thermodynamics with words such as the following: work, quality,
interpolation, sink/reservoir, absolute temperature, open/closed system, intensive/extensive
property, subcooled, saturated, superheated.
4. Explain the advantages and limitations of the ideal gas model.
5. Sketch and interpret paths on a P-Vdiagram.
6. Perform steam table computations like quality determination, double interpolation.

To these, we could add expressing and explaining the first and second laws. Make a quick list of these expressions and explanations in your own words, including cartoons or illustrations as you see fit,  starting with the first and second laws.

Enter your rating: 
Your rating: None
5
Average: 5 (1 vote)

Keys to the Kingdom of Chemical Engineering (uakron.edu, 11min) Sometimes it helps to reduce a subject to its simplest key elements in order to "see the forest instead of the trees." In this presentation, the entire subject of Chemical Engineering is reduced to three key elements: sizing a reactor (Uakron.edu, 7min), sizing a distillation column (uakron.edu, 9min), and sizing a heat exchanger (uakron.edu, 9min). In principle, these elements involve the independent subjects of kinetics, thermodynamics, and transport phenomena. In reality, each element involves thermodynamics to some extent. Distillation involves thermodynamics in the most obvious way because relative volatility and activity coefficients are rarely discussed in a kinetics or transport course. In kinetics, however, the rate of reaction depends on the partial pressures of the reactants and their nearness to the equilibrium concentrations, which are thermodynamical quantities. In heat exchangers, the heat transfer coefficient is important, but we also need to know the temperatures for the source and sink of the heat transfer; these temperatures are often dictated by thermodynamical constraints like the boiling temperature or boiler temperature required to run a Rankine cycle (cf. Chapter 5). In case you are wondering about the subject of "material and energy balances," the conservation of mass is much like the conservation of energy; therefore, we subsume this subject under the general umbrella of thermodynamics. Understanding the distinctions between thermodynamics and other subjects should help you to frame a place for this knowledge in your mind. Understanding the interconnection of thermodynamics with subjects to be covered later should help you to appreciate the necessity of filing this knowledge away for the long term, such that it can be retrieved at any time in the future.

Enter your rating: 
Your rating: None
0
No votes yet