Chapter 2 - The energy balance
Book navigation
- Chapter 1 - Basic concepts
-
Chapter 2 - The energy balance
- 02.01 Expansion/Contraction Work
- 02.03 Work Associated with Flow
- 02.04 Lost Work Versus Reversibility
- 02.06 Path Properties and State Properties
- 02.07 The Closed-System Energy Balance
- 02.08 The Open-System, Steady-State Energy Balance
- 02.09 The Complete Energy Balance
- 02.10 Internal Energy, Enthalpy, and Heat Capacities
- 02.11 Reference States
- 02.13 Energy Balances for Process Equipment
- 02.15 Closed and Steady-State Open Systems
- 02.16 Unsteady State Open Systems
- 02.18 Chapter 2 Summary
- Chapter 3 - Energy balances for composite systems.
- Chapter 4 - Entropy
- Chapter 5 - Thermodynamics of Processes
- Chapter 6 - Classical Thermodynamics - Generalization to any Fluid
- Chapter 7 - Engineering Equations of State for PVT Properties
- Chapter 8 - Departure functions
- Chapter 9 - Phase Equlibrium in a Pure Fluid
- Chapter 10 - Introduction to Multicomponent Systems
- Chapter 11 - An Introduction to Activity Models
- Chapter 12 - Van der Waals Activity Models
- Chapter 13 - Local Composition Activity Models
- Chapter 14 - Liquid-liquid and solid-liquid equilibria
- Chapter 16 - Advanced Phase Diagrams
- Chapter 15 - Phase Equilibria in Mixtures by an Equation of State
- Chapter 17 - Reaction Equilibria
- Chapter 18 - Electrolyte Solutions