05.2 - The Rankine cycle
Book navigation
- Chapter 1 - Basic concepts
- Chapter 2 - The energy balance
- Chapter 3 - Energy balances for composite systems.
- Chapter 4 - Entropy
- Chapter 5 - Thermodynamics of Processes
- Chapter 6 - Classical Thermodynamics - Generalization to any Fluid
- Chapter 7 - Engineering Equations of State for PVT Properties
- Chapter 8 - Departure functions
- Chapter 9 - Phase Equlibrium in a Pure Fluid
- Chapter 10 - Introduction to Multicomponent Systems
- Chapter 11 - An Introduction to Activity Models
- Chapter 12 - Van der Waals Activity Models
- Chapter 13 - Local Composition Activity Models
- Chapter 14 - Liquid-liquid and solid-liquid equilibria
- Chapter 16 - Advanced Phase Diagrams
- Chapter 15 - Phase Equilibria in Mixtures by an Equation of State
- Chapter 17 - Reaction Equilibria
- Chapter 18 - Electrolyte Solutions
Rankine vs. Carnot: LearnChemE
Rankine Cycle Introduction (LearnChemE.com, 4min) The Carnot cycle becomes impractical for common large scale application, primarily because H2O is the most convenient working fluid for such a process. When working with H2O, an isentropic turbine could easily take you from a superheated region to a low quality steam condition, essentially forming large rain drops. To understand how this might be undesirable, imagine yourself riding through a heavy rain storm at 60 mph with your head outside the window. Now imagine doing it 24/7/365 for 10 years; that's how long a high-precision, maximally efficient turbine should operate to recover its price of investment. Next you might ask why not use a different working fluid that does not condense, like air or CO2. The main problem is that the heat transfer coefficients of gases like these are about 40 times smaller that those for boiling and condensing H2O. That means that the heat exchangers would need to be roughly 40 times larger. As it is now, the cooling tower of a nuclear power plant is the main thing that you see on the horizon when approaching from far away. If that heat exchanger was 40 times larger... that would be large. And then we would need a similar one for the nuclear core. Power cycles based on heating gases do exist, but they are for relatively small power generators.
With this background, it may be helpful to review the relation between the Carnot and Rankine cycles. (LearnChemE.com, 6min) The Carnot cycle is an idealized conceptual process in the sense that it provides the maximum possible fractional conversion of heat into work (aka. thermal efficiency, ηθ).
Comprehension Questions:
1. Why is the Carnot cycle impractical when it comes to running steam through a turbine? How does the Rankine cycle solve this problem?
2. Why is the Carnot cycle impractical when it comes to running steam through a pump? How does the Rankine cycle solve this problem?
3. It is obvious which temperatures are the "high" and "low" temperatures in the Carnot cycle, but not so much in the Rankine cycle. The "boiler" in a Rankine cycle actually consists of "simple boiling" where the saturated liquid is converted to saturated vapor, and superheating where the saturated vapor is raised to the temperature entering the turbine. When comparing the thermal efficiency of a Rankine cycle to the Carnot efficiency, should we substitute the temperature during "simple" boiling, or the temperature entering the turbine into the formula for the Carnot efficiency? Explain.
Using XSteam Excel (4:46) (ms
Using XSteam Excel (4:46) (msu.edu)
This utility is helpful once you have learned how to interpolate reliably. It saves the tedium.
Using XSteam Matlab (4:20) (m
Using XSteam Matlab (4:20) (msu.edu)
This utility is helpful once you have learned how to interpolate reliably. It saves the tedium.
Rankine Example
Thermal Efficiency with a 1-Stage Rankine Cycle. (uakron.edu, 12min) Steam from a boiler enters a turbine at 350C and 1.2MPa and exits at 0.01MPa and saturated vapor; compute the thermal efficiency (ηθ) of the Rankine cycle based on this turbine. (Note that this is something quite different from the turbine's "expander" efficiency, ηE.) This kind of calculation is one of the elementary skills that should come out of any thermodynamics course. Try to pause the video often and work out the answer on your own whenever you think you can. You will learn much more about the kinds of mistakes you might make if you take your best shot, then use the video to check yourself. Then practice some more by picking out other boiler and condenser conditions and turbine efficiencies. FYI: the conditions of this problem should look familiar because they are the same as the turbine efficiency example in Chapter 4. That should make it easy for you to take your best shot.
Comprehension Questions:
1. The entropy balance is cited in this video, but never comes into play. Why not?
2. Steam from a boiler enters a turbine at 400C and 2.5 MPa and exits a 100% efficient turbine at 0.025MPa; compute the Rankine efficiency. Comment on the practicality of this process. (Hint: review Chapter 4 if you need help with turbine efficiency.)
Rankine Example Using Steam.xls
Rankine Example Using Steam.xls (uakron.edu, 15min) High pressure steam (254C,4.2MPa, Saturated vapor) is being considered for application in a Rankine cycle dropping the pressure to 0.1MPa; compute the Rankine efficiency. This demonstration applies the Steam.xls spreadsheet to get as many properties as possible.
Comprehension Questions:
1. Why does the proposed process turn out to be impractical?
2. What would you need to change in the process to make it work? Assume the high and low temperature limits are the same. Be quantitative.
3. What would be the thermal efficiency of your modified process?