Toprated ScreenCasts
Text Section  Link to original post  Rating (out of 100)  Number of votes  Copy of rated post 

07.11  The molecular basis of equations of state: analytical theories  Click here.  100  1 
Nature of Molecular Energy  Example Calculation(8min, uakron.edu) Given an estimate for the radial distribution function (RDF) integrate to obtain an estimate of the internal energy. The result provides an alternative to the attractive term of the vdW EOS. 
09.04  Changes in Gibbs Energy with Pressure  Click here.  100  1 
Gibbs Energy  Nuts to Soup. (learncheme.com, 8min) It is straightforward to start from the definition of Gibbs Energy and derive all the changes in Gibbs energy. These can be graphed for H2O to see how familiar quantities from the steam tables relate to changes in this unfamiliar property. 
01.5 Real Fluids and Tabulated Properties  Click here.  100  1 
When you use a spreadsheet like Steam.xlsx(uakron, 15min), interpolation can be greatly expedited. It is recommended that you enable the solver before applying Steam.xls. Comprehension Questions: 
10.07  Nonideal Systems  Click here.  100  1 
Nonideal Mixtures (4:58) (msu.edu) Raoult's law is an easy way to calculate VLE, but it is inaccurate for most detailed VLE calculations. This screencast provides an overview of the problems, and introduces the concept of an azeotrope. The VLE Kratio is shown to be less than one or greater than one dependenting on the overall system concentration relative to the azeotrope composition where K=1. The concept of positive and negative deviations is introduced. 
10.06  Relating VLE to Distillation  Click here.  100  2 
Distillation is the primary choice for separations in the petrochemical industry. Because the majority of chemical processing involves separations/purifications, that makes distillation the biggest economic driver in all of chemical production. Therefore, it is very important for chemical engineers to understand how distillation works (21min, uakron.edu) and how VLE plays the major role. This video is a bit long, but it puts into context how phase diagrams and thermodynamic properties relate to very important practical applications. You may find it helpful to reinforce the conceptual video with some sample calculations.(12min) At the end of the video, you should be able to answer the following: Consider the acetone+ethanol system. Use SCVP (Eqn 2.47) to answer the following.

11.02  Calculations with Activity Coefficients  Click here.  96.6667  6 
Dew Temperature (7:57) (msu.edu) The culmination of the activity coefficient method is application of the fitted activity coefficients to extrapolate from limited experiments in a Stage III calculation. The recommended order of study is 1) Bubble Pressure; 2) Bubble Temperature; 3) Dew Pressure; 4) Dew Temperature. Note that an entire Txy diagram can be generated with bubble temperature calculations; no dew calculations are required. However, many applications require dew calculations, so they cannot be avoided. The dew calculations are more complicated than bubble calculations, because the liquid activity coefficients are not known until the unknown liquid mole fractions are found. This screencast describes the procedure and how to implement the method in Matlab or Excel. 
10.01  Introduction to Phase Diagrams  Click here.  96  5 
Introduction to Phase Behavior (9:37) (msu.edu) Comprehension Questions: 1. Referring to the Txy diagram on slide 3, estimate T, nature (ie. L,V, V+L, L+L), composition(s), and amount of the phase(s) for points: a, b. d, g. 
07.06 Solving The Cubic EOS for Z  Click here.  95  4 
1. PengRobinson PVT Properties  Excel (3:30) (msu.edu) Introduction to PVT calculations using the PengRobinson workbook Preos.xlsx. Includes hints on changing the fluid and determining stable roots. Comprehension Questions: 1. At 180K, what value of pressure gives you the minimum value for Z of methane? Hint: don't call solver. 2. At 30 bar, what value of pressure gives Z=0.95 for methane? 3. Compute the molar volume(s) (cm^{3}/mol) for argon at 100K for each of the following? 
14.10 Solidliquid Equilibria  Click here.  95  4 
SLE using Excel with the M1 model (7min, uakron.edu)
Similar to LLE in Excel, the iteration feature can be used to quickly solve for SLE at multiple temperatures.
Comprehension Questions: 
04.09 Turbine calculations  Click here.  93.3333  3 
General procedure to solve for steam turbine efficiency. (LearnChemE.com, 5min) This video outlines the procedure without actually solving any specific problem. It shows how inefficiency affects the TS diagram and how to compute the actual temperature at the turbine outlet. 