Top-rated ScreenCasts

Text Section Link to original post Rating (out of 100) Number of votes Copy of rated post
01.6 Summary Click here. 100 1

The objectives for Chapter 1 were:

1. Explain the definitions and relations between temperature, molecular kinetic energy,
molecular potential energy and macroscopic internal energy, including the role of intermolecular potential energy and how it is modeled. Explain why the ideal gas internal energy
depends only on temperature.
2. Explain the molecular origin of pressure.
3. Apply the vocabulary of thermodynamics with words such as the following: work, quality,
interpolation, sink/reservoir, absolute temperature, open/closed system, intensive/extensive
property, subcooled, saturated, superheated.
4. Explain the advantages and limitations of the ideal gas model.
5. Sketch and interpret paths on a P-Vdiagram.
6. Perform steam table computations like quality determination, double interpolation.

To these, we could add expressing and explaining the first and second laws. Make a quick list of these expressions and explanations in your own words, including cartoons or illustrations as you see fit,  starting with the first and second laws.

10.08 - Concepts for Generalized Phase Equilibria Click here. 100 1

Concepts for General Phase Equilibria (12:33) (msu.edu)

The calculus used in Chapter 6 needs to be generalized to add composition dependence. Also, we introduce partial molar properties and composition derivatives that are not partial molar properties. We introduce chemical potential These concepts are used to show that the chemical potentials and component fugacities are used as criteria for phase equilibria.

05.4 - Refrigeration Click here. 100 2

Refrigeration Cycle Introduction (LearnChemE.com, 3min) explains each step in an ordinary vapor compression (OVC) refrigeration cycle and the energy balance for the step. You might also enjoy the more classical introduction (USAF, 11min) representing your tax dollars at work. The musical introduction is quite impressive and several common misconceptions are addressed near the end of the video.
Comprehension Questions: Assume zero subcooling and superheating in the condenser and evaporator.
1. An OVC operates with 43 C in the condenser and -33 C in the evaporator. Why is the condenser temperature higher than than the evaporator temperature? Shouldn't it be the other way around? Explain.
2. An OVC operates with 43 C in the condenser and -33 C in the evaporator. The operating fluid is R134a. Estimate the pressures in the condenser and evaporator using the table in Appendix E-12.
3. An OVC operates with 43 C in the condenser and -33 C in the evaporator. The operating fluid is R134a. Estimate the pressures in the condenser and evaporator using the chart in Appendix E-12.
4. An OVC operates with 43 C in the condenser and -33 C in the evaporator. The operating fluid is R134a. Estimate the pressures in the condenser and evaporator using Eqn 2.47.
5. An OVC operates with 43 C in the condenser and -33 C in the evaporator. Assume the compressor of the OVC cycle is adiabatic and reversible. What two variables (P,V,T,U,H,S) determine the state at the outlet of the compressor?

14.10 Solid-liquid Equilibria Click here. 100 2

Solid-liquid Equilibria using Excel (7:38min, msu)

The strategy for solving SLE is discussed and an example generating a couple points from Figure 14.12 of the text are performed. Most of the concepts are not unique to UNIFAC or Excel. This screeencast shows how to use the solver tool to find solubility at at given temperature.

11.02 - Calculations with Activity Coefficients Click here. 96 5

Dew Temperature (7:57) (msu.edu)

The culmination of the activity coefficient method is application of the fitted activity coefficients to extrapolate from limited experiments in a Stage III calculation. The recommended order of study is 1) Bubble Pressure; 2) Bubble Temperature; 3) Dew Pressure; 4) Dew Temperature. Note that an entire Txy diagram can be generated with bubble temperature calculations; no dew calculations are required. However, many applications require dew calculations, so they cannot be avoided. The dew calculations are more complicated than bubble calculations, because the liquid activity coefficients are not known until the unknown liquid mole fractions are found. This screencast describes the procedure and how to implement the method in Matlab or Excel.

10.01 - Introduction to Phase Diagrams Click here. 96 5

Introduction to Phase Behavior (9:37) (msu.edu)
Students tend to be distracted with the algorithms for bubble, dew, and flash, and often miss the important concepts of the relation of the calculations to the phase diagram. This screencast discusses the pure component endpoints, the trends in phase behavior at the bubble and dew conditions, and the qualitative relation between the P-x-y and T-x-y diagrams.

Comprehension Questions:

1. Referring to the Txy diagram on slide 3, estimate T, nature (ie. L,V, V+L, L+L), composition(s), and amount of the phase(s) for points: a, b. d, g.
2. Referring to the Txy diagram on slide 3, suppose we had T = 340K and zA = 0.40. Estimate T, nature (ie. L,V, V+L, L+L), composition(s), and amount of the phase(s) for that point.
3. Which component is more volatile, A or B?

14.10 Solid-liquid Equilibria Click here. 93.3333 3

SLE using Excel with the M1 model (7min, uakron.edu)

Similar to LLE in Excel, the iteration feature can be used to quickly solve for SLE at multiple temperatures.

Comprehension Questions:
1. Estimate the solubility of naphthalene in benzene at 25C. (a) Use the ideal solution model. (b) Use the MAB model. (ANS. a. 0.306, b. 0.302)
2. Estimate the solubility of biphenyl in nhexane at 25C. (a) Use the ideal solution model. (b) Use the MAB model. 
3. Estimate the solubility of phenol in benzene at 25C. (a) Use the ideal solution model. (b) Use the MAB model. 

07.09 -The Molecular Basis of Equations of State: Concepts and Notation Click here. 93.3333 3

Nature of Molecular Interactions - Macro To Nano(8min). (uakron.edu) Instead of matching the critical point, we can use experimental data for density vs. temperature from NIST as a means of characterizing the attractive energy and repulsive volume. A plot of compressibility factor vs. reciprocal temperature exhibits fairly linear behavior in the liquid region. Matching the slope and intercept of this line characterizes two parameters. This characterization may be even more useful than using the critical point if you are more interested in liquid densities than the critical point. In a similar manner, you could derive an EOS based on square-well (SW) simulations and use the SW EOS to match the NIST data(11min), as shown in this sample calculation of the ε and σ values for the SW potential. In this lesson, we learn how to characterize the forces between individual atoms, which may seem quite unreal or impractical when you first encounter it. On the other hand, "nanotechnology" is a scientific discipline that explores how the manipulation of nanostructure is now quite real with very significant practical implications. "The world's smallest movie" shows dancing molecules, (IBM, 2min) demonstrating the reality of molecular manipulation, and the accompanying text explains some of the practical implications. Along similar lines, researchers at LLNL and CalTech have developed 3D printers that can display "voxels" (the 3D analog of pixels) of ~1nm3. That's around 10-100 atoms per voxel. Since 2013-14, chemical/materials engineers have been building nanostructures (TEDX, 13min) in the same way that civil engineers build infrastructure.
Comprehension Questions:
1. What does the y-intercept represent in a plot of compressibility factor vs. reciprocal temperature?
2. What parameter does the y-intercept help to characterize, b or ε?
3. What does the x-intercept represent in a plot of compressibility factor vs. reciprocal temperature?
4. What parameter does the x-intercept help to characterize, b or ε?
5. Apply the SW EOS given in the second video to the isochore at 16.1 mol/L. Do you get the same values for ε/k and σ? Explain.

07.06 Solving The Cubic EOS for Z Click here. 93.3333 3

1. Peng-Robinson PVT Properties - Excel (3:30) (msu.edu)

Introduction to PVT calculations using the Peng-Robinson workbook Preos.xlsx. Includes hints on changing the fluid and determining stable roots.

Comprehension Questions:

1. At 180K, what value of pressure gives you the minimum value for Z of methane? Hint: don't call solver.

2. At 30 bar, what value of pressure gives Z=0.95 for methane?

3. Compute the molar volume(s) (cm3/mol) for argon at 100K for each of the following?
(a) 3.000 bars (b) 4.000 bars (c) 3.26903 bars.

12.03 - Scatchard-Hildebrand Theory Click here. 90 2

This video walks you through the process of transforming the M1/MAB model into the Scatchard-Hildebrand model using Excel (6min, uakron.edu) It steps systematically through the modifications to the spreadsheet to obtain each new model. You should implement the M1/MAB model before implementing this procedure.

Comprehension Questions:
1. Modify the M1/MAB spreadsheet to obtain Pxy diagrams with the Scatchard-Hildebrand, M2, and van Laar models.
2. Add Txy capability to each of the models.
3. Search for experimental data on the system ethanol+toluene. Modify your spreadsheets to plot the experimental data (points) on the same plot with the predictions. Which model (MAB or ScHil) provides the most accurate predictions when compared to data? 

Pages