Please rate screencasts using the stars on the right under each post. Ratings are anonymous. Ratings help other users find good screencasts, and help the authors know which screencasts to improve.
13.04 - UNIQUAC
Book navigation
- Chapter 1 - Basic concepts
- Chapter 2 - The energy balance
- Chapter 3 - Energy balances for composite systems.
- Chapter 4 - Entropy
- Chapter 5 - Thermodynamics of Processes
- Chapter 6 - Classical Thermodynamics - Generalization to any Fluid
- Chapter 7 - Engineering Equations of State for PVT Properties
- Chapter 8 - Departure functions
- Chapter 9 - Phase Equlibrium in a Pure Fluid
- Chapter 10 - Introduction to Multicomponent Systems
- Chapter 11 - An Introduction to Activity Models
- Chapter 12 - Van der Waals Activity Models
- Chapter 13 - Local Composition Activity Models
- Chapter 14 - Liquid-liquid and solid-liquid equilibria
- Chapter 16 - Advanced Phase Diagrams
- Chapter 15 - Phase Equilibria in Mixtures by an Equation of State
- Chapter 17 - Reaction Equilibria
- Chapter 18 - Electrolyte Solutions
UNIQUAC concepts (6:44)
UNIQUAC concepts (6:44) (msu.edu)
Concepts and assumptions used in developing the UNIQUAC activity coefficient method. This method introduced the use of surface area as an important quantity in calculation of activity coefficients.
Volumes and Areas from Groups (3:04)
Volumes and Areas from Group Contributions (3:04)
Group contributions are used widely in property prediction. The volumes and surface areas have been determined by x-ray data and high-temperature collision data. The UNIQUAC and UNIFAC activity coefficient methods use these quantities to calculation volume fractions and surface area fractions. The assignment of functional groups for a molecule must be done carefully to assure agreement with the groups used by the model developers.
Comprehension Questions:
1. Estimate R and Q for 1,4 dihydroxy benzene.
2. Estimate R and Q for n-propyl alcohol and compare them to the values for IPA.
3. Estimate R and Q for methyl-npropyl ketone.