08.02 - The Internal Energy Departure Function
Book navigation
- Chapter 1 - Basic concepts
- Chapter 2 - The energy balance
- Chapter 3 - Energy balances for composite systems.
- Chapter 4 - Entropy
- Chapter 5 - Thermodynamics of Processes
- Chapter 6 - Classical Thermodynamics - Generalization to any Fluid
- Chapter 7 - Engineering Equations of State for PVT Properties
-
Chapter 8 - Departure functions
- 08.01 - The Departure Function Pathway
- 08.02 - The Internal Energy Departure Function
- 08.03 - The Entropy Departure Function
- 08.04 - Other Departure Functions
- 08.05 - Summary of Density Dependent Formulas
- 08.06 - Pressure Dependent Formulas
- 08.07 - Implementation of Departure Functions
- 08.08 - Reference States
- Chapter 9 - Phase Equlibrium in a Pure Fluid
- Chapter 10 - Introduction to Multicomponent Systems
- Chapter 11 - An Introduction to Activity Models
- Chapter 12 - Van der Waals Activity Models
- Chapter 13 - Local Composition Activity Models
- Chapter 14 - Liquid-liquid and solid-liquid equilibria
- Chapter 16 - Advanced Phase Diagrams
- Chapter 15 - Phase Equilibria in Mixtures by an Equation of State
- Chapter 17 - Reaction Equilibria
- Chapter 18 - Electrolyte Solutions
The Internal Energy Departure
The Internal Energy Departure Function (11min, uakron.edu) Deriving departure functions for a variety of equations of state is simplified by transforming to dimensionless units and using density instead of volume. This also leads to an extra simplification for the internal energy departure function.
Comprehension Questions:
1. What is the value of T(∂P/∂T)V - P for an ideal gas?
2. What is the value of (∂U/∂V)T for an ideal gas and how can you explain this result at the molecular scale?
3. The Redlich-Kwong (RK) EOS is: P=RT/(V-b) -a/(V2RT1.5). Use Eqn. 8.13 to solve for (U-Uig)/RT of the RK EOS.
4. The RK EOS can be written as: Z = 1/(1-bρ) - aρ/(RT1.5). Use Eqn. 8.14 to solve for (U-Uig)/RT of the RK EOS.
Departure Function Derivation: Sections 8.2 - 8.8
Departure Function Derivation Principles (8:03) (msu.edu)
This screencast covers sections 8.2 - 8.8. Concepts of using the equation of state to evaluate departure functions. The screencasts also discusses the choice of density integrals or pressure integrals. The use of a reference state is discussed.