11.13 - Osmotic Pressure
Book navigation
- Chapter 1 - Basic concepts
- Chapter 2 - The energy balance
- Chapter 3 - Energy balances for composite systems.
- Chapter 4 - Entropy
- Chapter 5 - Thermodynamics of Processes
- Chapter 6 - Classical Thermodynamics - Generalization to any Fluid
- Chapter 7 - Engineering Equations of State for PVT Properties
- Chapter 8 - Departure functions
- Chapter 9 - Phase Equlibrium in a Pure Fluid
- Chapter 10 - Introduction to Multicomponent Systems
-
Chapter 11 - An Introduction to Activity Models
- 11.01 Modified Raoult's Law and Excess Gibbs Energy
- 11.02 - Calculations with Activity Coefficients
- 11.05 - Modified Raoult's Law and Excess Gibbs Energy
- 11.06 - Redlich-Kister and the Two-parameter Margules Models
- 11.07 - Activity Models at Special Compositions
- 11.08 - Preliminary Indications of VLLE
- 11.09 - Fitting Activity Coefficients to Multiple Data
- 11.12 - Lewis-Randall Rule and Henry's Law
- 11.13 - Osmotic Pressure
- Chapter 12 - Van der Waals Activity Models
- Chapter 13 - Local Composition Activity Models
- Chapter 14 - Liquid-liquid and solid-liquid equilibria
- Chapter 16 - Advanced Phase Diagrams
- Chapter 15 - Phase Equilibria in Mixtures by an Equation of State
- Chapter 17 - Reaction Equilibria
- Chapter 18 - Electrolyte Solutions
Osmotic Pressure (7:23)
Osmotic Pressure (7:23) (Learncheme.com)
A derivation of the relation for osmotic pressure, and an explanation of why the pressures are different on each side of the semi-permeable membrane.
Example - MW of a protein by osmotic pressure
MW of protein by osmotic pressure - (8:23) (learncheme.com)
An application of osmotic pressure measurement to determine MW of a protein.