Please rate the screencasts using the stars on the right of each post. Ratings are anonymous. Ratings help users find good screencasts, and help the authors know which screencasts to improve.
13.05 - UNIFAC
Book navigation
- Chapter 1 - Basic concepts
- Chapter 2 - The energy balance
- Chapter 3 - Energy balances for composite systems.
- Chapter 4 - Entropy
- Chapter 5 - Thermodynamics of Processes
- Chapter 6 - Classical Thermodynamics - Generalization to any Fluid
- Chapter 7 - Engineering Equations of State for PVT Properties
- Chapter 8 - Departure functions
- Chapter 9 - Phase Equlibrium in a Pure Fluid
- Chapter 10 - Introduction to Multicomponent Systems
- Chapter 11 - An Introduction to Activity Models
- Chapter 12 - Van der Waals Activity Models
- Chapter 13 - Local Composition Activity Models
- Chapter 14 - Liquid-liquid and solid-liquid equilibria
- Chapter 16 - Advanced Phase Diagrams
- Chapter 15 - Phase Equilibria in Mixtures by an Equation of State
- Chapter 17 - Reaction Equilibria
- Chapter 18 - Electrolyte Solutions
Unifac.xls Calculation of Bub
Unifac.xls Calculation of Bubble Temperature. (3 min) (LearnChemE.com)
Comprehension Questions: Download Unifac.xls from the software link and use it to answer the following.
1. Estimate the activity coefficient of IPA in water at 80C and xw = 0.1.
2. Estimate the fugacity for IPA in water at 80C and xw =0.1.
3. Estimate the total pressure at 80C when xw =0.1.
4. Estimate the bubble temperature of IPA in water at 760mmHg and xw =0.1.
UNIFAC concepts (8:17)
UNIFAC concepts (8:17) (msu.edu)
UNIFAC is an extension of the UNIQUAC method where the residual contribution is predicted based on group contributions using energy parameters regressed from a large data set of mixtures. This screecast introduces the concepts used in model development. You may want to review group contribution methods before watching this presentation.
Comprehension Questions:
1. What is the difference between the upper case Θ of UNIFAC and the lower cast θ of UNIQUAC?
2. Suppose you had a mixture that was exactly the same proportions as the lower right "bubble" in slide 2. Compute ΘOH for that mixture.
3. Compare your value computed in 2 to the value given by unifac.xls.