When both reactants and products are present in a reactng mixture, the direction the reaction will proceed is not necessarily indicated by the sign of ΔGo or Ka. Rather, it is determined by ΔG. This screencasts provides guidance for understanding this concept.
Comprehension Questions: (Hint: review Example 17.1 before answering.)
1. CO and H2 are fed in a 2:1 ratio to a reactor at 500K and 20 bars with a catalyst that favors only CH3OH as its product. When the conversion of H2 is 32%, will the reaction go forwards towards product or back to reactants? 2. CO and H2 are fed in a 2:1 ratio to a reactor at 500K and 20 bars with a catalyst that favors only CH3OH as its product. When the conversion of CO is 52%, will the reaction go forwards towards product or back to reactants? 3. CO and H2 are fed in a 1:1 ratio to a reactor at 500K and 20 bars with a catalyst that favors only CH3OH as its product. When the conversion of H2 is 42%, will the reaction go forwards towards product or back to reactants? 4. CO and H2 are fed in a 1:1 ratio to a reactor at 500K and 20 bars with a catalyst that favors only CH3OH as its product. When the conversion of H2 is 42%, will the reaction go forwards towards product or back to reactants?
Comments
Lira replied on Permalink
Which way will a reaction go? (3:40)
Which way will a reaction go? (3:40) (msu.edu)
When both reactants and products are present in a reactng mixture, the direction the reaction will proceed is not necessarily indicated by the sign of ΔGo or Ka. Rather, it is determined by ΔG. This screencasts provides guidance for understanding this concept.
Comprehension Questions: (Hint: review Example 17.1 before answering.)
1. CO and H2 are fed in a 2:1 ratio to a reactor at 500K and 20 bars with a catalyst that favors only CH3OH as its product. When the conversion of H2 is 32%, will the reaction go forwards towards product or back to reactants?
2. CO and H2 are fed in a 2:1 ratio to a reactor at 500K and 20 bars with a catalyst that favors only CH3OH as its product. When the conversion of CO is 52%, will the reaction go forwards towards product or back to reactants?
3. CO and H2 are fed in a 1:1 ratio to a reactor at 500K and 20 bars with a catalyst that favors only CH3OH as its product. When the conversion of H2 is 42%, will the reaction go forwards towards product or back to reactants?
4. CO and H2 are fed in a 1:1 ratio to a reactor at 500K and 20 bars with a catalyst that favors only CH3OH as its product. When the conversion of H2 is 42%, will the reaction go forwards towards product or back to reactants?