The book transversal links work only on the chapter pages. Use the Navigation at the bottom of the page to navigate when viewing textbook sections.
02.06 Path Properties and State Properties
Book navigation
- Chapter 1 - Basic concepts
-
Chapter 2 - The energy balance
- 02.01 Expansion/Contraction Work
- 02.03 Work Associated with Flow
- 02.04 Lost Work Versus Reversibility
- 02.06 Path Properties and State Properties
- 02.07 The Closed-System Energy Balance
- 02.08 The Open-System, Steady-State Energy Balance
- 02.09 The Complete Energy Balance
- 02.10 Internal Energy, Enthalpy, and Heat Capacities
- 02.11 Reference States
- 02.13 Energy Balances for Process Equipment
- 02.15 Closed and Steady-State Open Systems
- 02.16 Unsteady State Open Systems
- 02.18 Chapter 2 Summary
- Chapter 3 - Energy balances for composite systems.
- Chapter 4 - Entropy
- Chapter 5 - Thermodynamics of Processes
- Chapter 6 - Classical Thermodynamics - Generalization to any Fluid
- Chapter 7 - Engineering Equations of State for PVT Properties
- Chapter 8 - Departure functions
- Chapter 9 - Phase Equlibrium in a Pure Fluid
- Chapter 10 - Introduction to Multicomponent Systems
- Chapter 11 - An Introduction to Activity Models
- Chapter 12 - Van der Waals Activity Models
- Chapter 13 - Local Composition Activity Models
- Chapter 14 - Liquid-liquid and solid-liquid equilibria
- Chapter 16 - Advanced Phase Diagrams
- Chapter 15 - Phase Equilibria in Mixtures by an Equation of State
- Chapter 17 - Reaction Equilibria
- Chapter 18 - Electrolyte Solutions
Path Properties vs. State Functions Explained
State functions explained (LearnChemE.com, 5min). Properties like those listed in the steam tables are functions of P, V, T, etc. They depend only on the state variables and knowing two of the variables is enough to figure out all the rest. Other functions are like heat and work; they depend on the path by which you proceed to evaluate their changes. Path function sample calculations (uakron, 9min) are useful in providing concrete illustrations of how the path matters for work and heat.
Comprehension Questions:
1. Consider a monatomic ideal gas in an insulated piston/cylinder with a vaccuum outside the piston, originally at 300K and 1bar. Suppose the volume is suddenly doubled with zero resistance against the piston. Compute the change in U and the work accomplished.
2. Consider the same ideal gas etc as above. Now suppose the volume is slowly doubled (e.g. using grains of sand). Compute the change in U and the work accomplished.
3. Continuing from #2 above, the insulation is removed and the piston/cylinder is allowed to equilibrate to its original temperature in #1 above. Compute the change in U and the work accomplished for this stage.
4. Compare the entire process from 2-3 above with the process in #1. Compute the change in U and the work accomplished overall. Also compare the final pressures. Is pressure a state function or a path function?