# 17.07 - Temperature Dependence of Ka

Please rate screencasts using the stars on the right below posts. Rating are anonymous. Ratings help other users find good screencasts and help the authors know which screencasts to improve.

### Example 17.4 and 17.5 solved using Kcalc.xlsx (6:01)

Example 17.4 and 17.5 solved using Kcalc.xlsx (6:01) (msu.edu)

The full form of the temperature dependence of Ka is implemented in Kcalc.xlsx and Kcalc.m. This screecast covers the use of Kcalc.xlsx for Example 17.4 and Example 17.5 of the textbook.

Comprehension Questions:

1. CO and H2 are fed in a 2:1 ratio to a reactor at 500K and 20 bars with a catalyst that favors only CH3OH as its product. Calculate ΔGRº and ΔHRº.
2. CO and H2 are fed in a 1:1 ratio to a reactor at 500K and 20 bars with a catalyst that favors only CH3OH as its product. Calculate ΔGRº and ΔHRº.
3. CO and H2 are fed in a 1:1 ratio to a reactor at 600K and 20 bars with a catalyst that favors only CH3OH as its product. Calculate ΔGRº and ΔHRº.
4. CO and H2 are fed in a 1:1 ratio to a reactor at 500K and 20 bars with a catalyst that favors only CH3OH as its product. Calculate ΔGTº and ΔHTº. Check your answer for ΔGTº using the value given for Ka in Example 17.1.
5. CO and H2 are fed in a 1:1 ratio to a reactor at 600K and 10 bars with a catalyst that favors only CH3OH as its product. Calculate Ka, ΔGTº and ΔHTº.
6. CH3OH is fed to a reactor at 200ºC and 1 bar with a catalyst that produces CO and H2. Calculate Ka, ΔGTº and ΔHTº for this reaction and compare to the literature values given in Example 17.6 of Section 17.10.
7. CH3OH is fed to a reactor at 300ºC and 1 bar with a catalyst that produces CO and H2. Calculate Ka for this reaction and compare to the value given in Example 17.6 of Section 17.10. Give two reasons why the two estimates are not identical.