10.11 The Ideal Solution Approximation and Raoult's Law
Book navigation
- Chapter 1 - Basic concepts
- Chapter 2 - The energy balance
- Chapter 3 - Energy balances for composite systems.
- Chapter 4 - Entropy
- Chapter 5 - Thermodynamics of Processes
- Chapter 6 - Classical Thermodynamics - Generalization to any Fluid
- Chapter 7 - Engineering Equations of State for PVT Properties
- Chapter 8 - Departure functions
- Chapter 9 - Phase Equlibrium in a Pure Fluid
-
Chapter 10 - Introduction to Multicomponent Systems
- 10.01 - Introduction to Phase Diagrams
- 10.02 - Vapor-Liquid Equilibrium (VLE) Calculations
- 10.03 - Binary VLE using Raoult's Law
- 10.04 - Multicomponent VLE & Raoult's Law Calculations
- 10.06 - Relating VLE to Distillation
- 10.07 - Nonideal Systems
- 10.08 - Concepts for Generalized Phase Equilibria
- 10.09 Mixture Properties for Ideal Gases
- 10.10 - Mixture Properties for Ideal Solutions
- 10.11 The Ideal Solution Approximation and Raoult's Law
- 10.12 Activity Coefficient and Fugacity Coefficient Approaches
- Chapter 11 - An Introduction to Activity Models
- Chapter 12 - Van der Waals Activity Models
- Chapter 13 - Local Composition Activity Models
- Chapter 14 - Liquid-liquid and solid-liquid equilibria
- Chapter 16 - Advanced Phase Diagrams
- Chapter 15 - Phase Equilibria in Mixtures by an Equation of State
- Chapter 17 - Reaction Equilibria
- Chapter 18 - Electrolyte Solutions
10.9 - 10.12 Mixture Properties Overview (6:53) (msu.edu)
10.9 - 10.12 Mixture Properties Overview (6:53) (msu.edu)
Why does Raoult's law work sometimes? Why does it fail sometimes? How can we hope to understand why it fails?
This section of the text is thick with lots of equations. It may help to filter out the most important equations and results so that you have the perspective of the overall objectives of this section. There are a lot of equations in this section to show that Raoult's law is a equlity of an ideal gas component fugacity with an ideal solution liquid fugacity! By understanding the assumptions used in the development of the equation, we can begin to understand the limitations of Raoult's law. This screencast goes on to preview the methods developed in the next sections of the textbook to deal with deviations in fugacities from ideal solutions and the ideal gas law.